Supporting Information

A novel sensing membrane for the determination of ferric ion in aqueous solutions

Wenjuan Fu, Xiangfeng Guo*, Lihua Jia*, Ying Ding

College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of

College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.

*Corresponding author. Email: xfguo@163.com (Guo X.), jlh29@163.com (Jia L.).

Figure S1 Construction of the fluorescence detection system.

Figure S4 The impossible mode of Fe^{3+} binding with D6

Figure S5 Fluorescence spectra (a) and fluorescence intensity (b) of SM-1 in aqueous solutions of HAc-NaAc (10 mM) with increasing concentrations of Fe³⁺ at pH 5.0. $\lambda_{ex} = 365$

Figure S6 Fluorescence spectra (a) and fluorescence intensity (b) of SM-2 in aqueous solutions of HAc-NaAc (10 mM) with increasing concentrations of Fe³⁺ at pH 5.0. $\lambda_{ex} = 365$

Figure S7 Fluorescence spectra (a) and fluorescence intensity (b) of SM-3 in aqueous solutions of HAc-NaAc (10 mM) with increasing concentrations of Fe³⁺ at pH 5.0. $\lambda_{ex} = 365$

Figure S8 Fluorescence spectra (a) and fluorescence intensity (b) of SM-4 in aqueous solutions of HAc-NaAc (10 mM) with increasing concentrations of Fe³⁺ at pH 5.0. $\lambda_{ex} = 365$

Figure S9 Fluorescence spectra (a) and fluorescence intensity (b) of SM-5 in aqueous solutions of HAc-NaAc (10 mM) with increasing concentrations of Fe³⁺ at pH 5.0. $\lambda_{ex} = 365$