Electronic Supplementary Information

Hg²⁺-selective chemosensor based on a novel amphiphilic block copolymer

bearing rhodamine 6G derivative moieties self-assembly in purely aqueous

media

Zhao Wang,*a Zhongkui Yang, a Tao Gao, a Jingwen He, a Laijiang Gong, a Yanbing

Lu,^a Yuanqin Xiong*a and Weijian Xu^a

^a College of Chemistry & Chemical Engineering, Hunan University, Changsha, China.
Tel: +86-0731-88821549, E-mail addresses: wangzhao0724@163.com (Z. Wang), xyuanqin@sina.com (Y. Q. Xiong)

Figure S1. ¹H NMR spectra recorded for compound 1 in d₆-DMSO

Figure S2. ¹H NMR spectra recorded for compound 2 in CDCl₃

Figure S3. ESI-MS spectra for compound 2

Figure S4. (a) 1 H NMR and (b) 13 C NMR spectra recorded for compound 3 in CDCl₃

Figure S5. ESI-MS spectra for compound 3

Figure S6. (a) 1 H NMR and (b) 13 C NMR spectra recorded for compound 4 in CDCl₃

Figure S7. ESI-MS spectra for compound 4

Figure S8. ¹H NMR spectra recorded for PTPA in CDCl₃

Figure S9. THF GPC traces recorded for (a) PNIPAM-based macroRAFT agent, (b) P[NIPAM]75-b-P[R6GDM]5

Figure S10. Temperature-dependence of optical transmittance recorded at a wavelength of 740 nm for 0.6 g/L aqueous solutions of P[NIPAM]₇₅-b-P[R6GDM]₅ diblock copolymers. The inset shows the Tyndall light scattering experiment for 0.6 g/L aqueous solutions of P[NIPAM]₇₅-b-P[R6GDM]₅ at 25 $^{\circ}$ C and 50 $^{\circ}$ C, respectively.

Figure S11. Hydrodynamic radius distributions, Intensity (%), recorded for the micellar solution of P[NIPAM]₇₅b-P[R6GDM]₅ (0.2 g/L) at 25 $^{\circ}$ C and 50 $^{\circ}$ C, respectively.

Figure S12. Absorption spectra of R6GDM in DMF solution (concentrations ranging from 1×10^{-5} mol/L to 10×10^{-5} mol/L) recorded at 25 °C. Inset: changes in the absorption intensity at 348 nm.

Figure S13. Optical photographs recorded under visible light (top) and UV (365 nm, bottom) for aqueous solutions (pH 7, 25 °C) of P[NIPAM]₇₅-b-P[R6GDM]₅ within 5 h upon addition of 4.0 equiv. of Hg²⁺, Fe³⁺, Ag⁺,Cu²⁺,Al³⁺, Pb²⁺, Ni²⁺,Co²⁺, Ca²⁺, Mg²⁺, K⁺ and Na⁺, respectively.

Figure S14. The fluorescence intensity at 574 nm of 0.4 g/L aqueous solution of $P[NIPAM]_{75}$ -b- $P[R6GDM]_5$ (pH 7, 25 °C) with 4.0 equiv (relative to R6GDM moieties) of various metal ions (black bars), and then with addition of 4.0 equiv (relative to R6GDM moieties) of Hg²⁺ (red bars).

Figure S15. Changes in fluorescence emission intensity recorded for 0.2 g/L aqueous solution of $P[NIPAM]_{75}$ -b- $P[R6GDM]_5$ at 25 °C when the solution pH was cycled between 3 and 7.