Supporting Information

Catalytic activity for CO oxidation of Cu-CeO₂ composite nanocubes synthesized by a hydrothermal method

Yuxiu Li^a, Yun Cai^a, Xinxin Xing^a, Nan Chen^a, Dongyang Deng^a, Yude Wang^{a,b*}

a Department of Materials Science and Engineering, Yunnan University, 650091 Kunming, Peoples' Republic of China b Yunnan Province Key Lab of Mico-Nano Materials and Technology, Yunnan University,

650091 Kunming, People's Republic of China

E-mail:

ydwang@ynu.edu.cn

(Y.

D.

Wang)

^{*} To whom correspondence should be addressed. Tel: +86-871-65031124, Fax: +86-871-65153832.

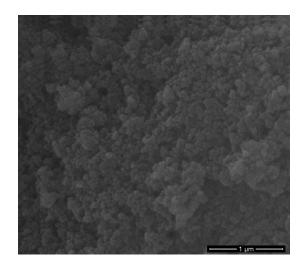
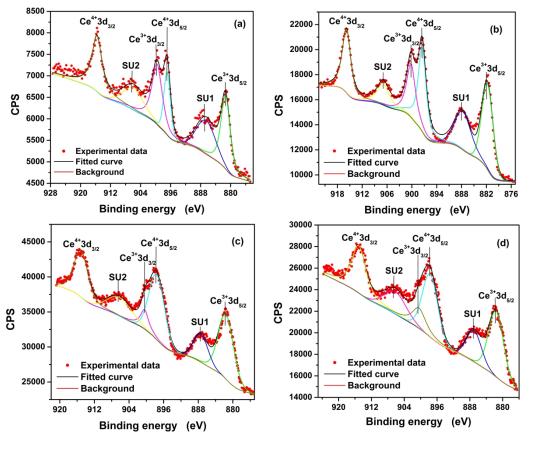
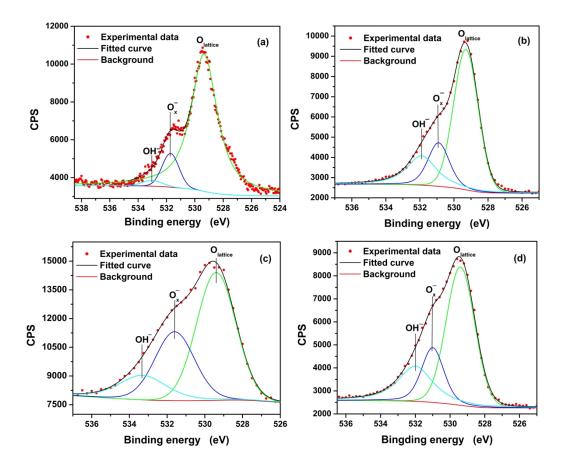
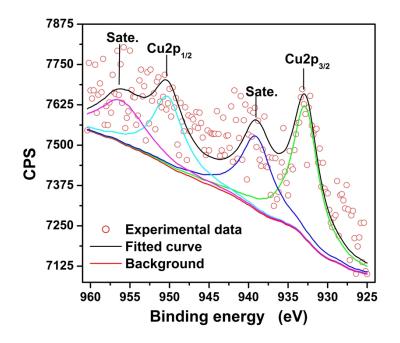



Figure S1 SEM image of 30Cu-CeO₂ composite nanoparticles.


SEM image revealed that there were various sizes of particles in the 30Cu-CeO₂ nanoparticles. Most particles are irregular morphology and the large particles were composed of small crystallites.


re S2 The high-resolution XPS spectra of Ce3d obtained on Cu-CeO₂ composite nanoparticles with the different Cu contents: (a) CeO₂, (b) 10Cu-CeO₂, (c) 30Cu-CeO₂, and (d) 40Cu-CeO₂, respectively.

The main features are composed of six peaks corresponding to the three pairs of spin–orbit doublets. Due to its highly non-stoichiometric nature, both valences (3+ and 4+) are present in CeO₂. The main peaks of Ce⁴⁺ $3d_{3/2}$ and Ce⁴⁺ $3d_{5/2}$ are shown at binding energies of ~915.7 and ~897.0 eV, respectively. Those of Ce³⁺ $3d_{3/2}$ and Ce³⁺ $3d_{5/2}$ are located at ~899.8 and ~881.7 eV. Two additional satellite lines SU1 and SU2, which means 'shake-up', are shown at ~906.2 eV on the Ce³⁺ $3d_{3/2}$ and at ~887.1 eV on the Ce³⁺ $3d_{5/2}$, respectively.

Figure S3 XPS region spectra of O1s obtained on Cu-CeO₂ composite nanoparticles with the different Cu contents: (a) CeO₂, (b) 10Cu-CeO₂, (c) 30Cu-CeO₂, and (d) 40Cu-CeO₂, respectively.

All the spectra show a peak at about 529.4 eV, which is assigned to oxygen ions ($O_{lattice}$) in CeO₂. Two evident shoulders at higher binding energies at ~531.7 and ~533 eV are present and attributable to oxygen vacancies and hydroxyl groups, respectively.

Figure S4 The high-resolution XPS spectrum of superposed Cu2p for 30Cu-CeO₂ composite nanoparticles.

The XPS spectra for Cu were simple and easily fitted to Cu⁰ species, indicating little oxidation of the Cu nanoparticles.

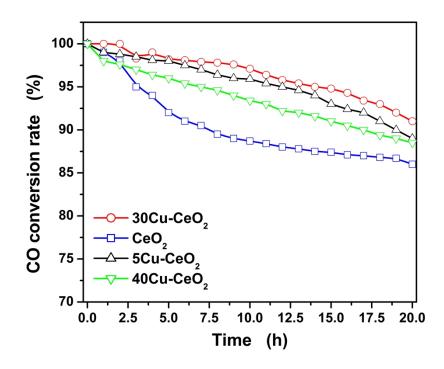


Figure S5Time-on-stream CO conversion on Cu-CeO2 composite nanoparticles (CeO2nanoparticles at 260 °C, 5Cu-CeO2 composite at 340 °C, 30Cu-CeO2 composite at 180 °C,and40Cu-CeO2 composite at 200 °C, respectively).

Phase composition (Cu/CeO ₂)	Cu-CeO ₂ composite nanoparticles					
	0%Cu	5%Cu	10%Cu	20%Cu	30%Cu	40%Cu
Cu	0	2.61	8.03	14.1	24.1	5.7
CeO ₂	100	97.39	91.97	80.3	70.8	40.9
CuO	0	0	0	5.6	5.1	53.4

 Table S1 The phase compositions of Cu-CeO₂ composite nanoparticles from XRD patterns.