Direct and quantitative detection of dicyandiamide (DCD) in milk

using surface enhanced Raman spectroscopy

Xiang Lin,^a Wu-Li-Ji Hasi,^{*a} Xiu-Tao Lou,^a Siqingaowa Han,^b Dian-Yang Lin,^{*a} Zhi-Wei Lu^{*a}

^a National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology Harbin150080, China;

^b Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia Tongliao 028007, China)

Supplementary Information

In order to determine the enhancement factor (EF) of silver colloid for detecting DCD in water, normal Raman spectrum of 4×10^{-2} g/mL DCD aqueous solution and SERS spectrum of 5×10^{-6} g/mL DCD aqueous solution under alkaline condition were recorded respectively (Fig. S2). It's worth noting that the actual concentration of DCD in solution subjected SERS measurement is 4×10^{-6} g/mL due to the dilution by silver colloid and aggregate agents. The enhancement factor of silver colloid was calculated according to the following equation:

$$EF = \frac{I_{SERS}}{I_{NR}} \times \frac{C_{NR}}{C_{SERS}}$$
(1)

 I_{SERS} is the intensity of the selected band at 926 cm⁻¹ obtained by SERS, I_{NR} is the corresponding band intensity of the normal Raman spectrum. C_{SERS} and C_{NR} are the sample concentrations in the SERS and normal Raman measurements, respectively. Based on the characteristic peaks at around 926 cm⁻¹, according to Eq. (1), an approximately 2.88×10^5 fold of signal enhancement in the SERS spectrum was achieved.

Figure S1. SERS spectrum of 5×10^{-6} g/mL DCD in water under alkaline condition (top red line) and normal Raman spectrum of 4×10^{-2} g/mL DCD in water (bottom black line). (Offset for clarity, same scale).

Figure S2. SERS spectra of DCD solution using NaCl as aggregating agent with different concentrations (0.1M and 2M).