Electronic Supplementary Information for

Preparation and application of a novel mixed-mode monolith for reversed-phase and per aqueous capillary electrochromatography

Sheng Tang,ab Yong Guo,^a Xiaojing Liang,^a Falin Wei,^c Limin Yang,^c Shujuan Liu,^a Xia Liu,*^a Shengxiang Jiang^a*

a Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

c Key Laboratory of Oil & Gas Production, China National Petroleum Corporation (CNPC) and Research Institute of Petroleum Exploration and Development (RIPED), Beijing 100083, China

*Corresponding authors:

Shujuan Liu (S. Liu), E-mail Address: liusj@licp.cas.cn

Tel: +86 931 4968272 Fax: +86 931 8277088

Xia Liu (X. Liu), E-mail Address: $gsliuxia@]zb.ac.cn$

Tel: +86 931 4968203 Fax: +86 931 8277088

Calculations

(1). The retention factor (k') was calculated using the following equation [1-4]:

$$
t_m(1 + \frac{\mu_{ep}}{i_{open}}) - t_0
$$

$$
k = \frac{\mu_{eo}^* \overline{i_{moment}}}{t_0}
$$

where t_0 and t_m are the retention time of the charged analyte and the EOF marker, respectively; μ_{ep} is the electrophoretic mobility of the charged analyte; μ_{eo} the actual "interstitial" electroosmotic mobility of the eluent in the monolithic column. The value of μ_{eo} is obtained by multiplying the "apparent" electroosmotic mobility μ_{eo}^* of the monolith by the tortuosity factor of the column. This tortuosity factor is eo (determined from the ratio of the currents observed in the CZE $({}^{i}_{open})$ and CEC (i_{monolith}) modes for the same running conditions [3].

For a neutral analyte, $\mu_{eo} = 0$, and thus the k of the neutral analytes could be expressed by the following equation:

$$
k = \frac{t_m - t_0}{t_0}
$$

(2). The linear flow velocity of EOF (v_{EOF}) was calculated using the following equation:

$$
v_{EOF} = \frac{L_e}{t_0}
$$

where L_e is the effective length of the monolithic column; t_0 is the retention time of the EOF marker.

(3). The electroosmotic mobility ($^{\mu_{EOF}}$) was calculated using the following equation [5]:

$$
\mu_{EOF} = \frac{v_{EOF}}{E}
$$

where *E* is the electric field strength.

According to the equation (2), μ_{EOF} could be expressed by the following equation [6]:

$$
\mu_{EOF} = \frac{v_{EOF}}{E} = \frac{L_e/t_0}{E} = \frac{L_e L_t}{t_0 V}
$$

where L_e and L_t are the effective length and the total length of the monolithic column, respectively; t_0 is the retention time of the EOF marker; *V* is the applied voltage.

(4). The plate height (*H*) was calculated using the following equation:

$$
H = \frac{L_e}{N}
$$

where L_e is the effective length of the monolithic column, *N* is is the theoretical plate number.

References

- 1. A. S. Rathore and C. Horváth, *Electrophoresis*, 2002, **23**, 1211-1216.
- 2. A. S. Rathore, E. Wen and C. Horvath, *Anal. Chem.*, 1999, **71**, 2633-2641.
- 3. D. Allen and Z. El Rassi, *Electrophoresis*, 2003, **24**, 408-420.
- 4. J. He, X. Wang, M. Morill and S. A. Shamsi, *Anal. Chem.*, 2012, **84**, 5236-5242.
- 5. A. Van De Goor, B. Wanders and F. Everaerts, *J. Chromatogr. A*, 1989, **470**, 95- 104.
- 6. N. J. Benz and J. S. Fritz, *HRC-J. High Resolut. Chromatogr.*, 1995, **18**, 175-178.

Characterization

The quantitative evaluation of 4,5-imidazoledicarboxylic acid on the surface of the IDS monolithic matrix was also made by using the following equation: the coverage of imidazolium groups (μ mol m⁻²) = (N%×10⁴)/(28×S), where N% represents the percentage of nitrogen as determined by elemental analysis (1.58%), S is the specific surface area of the IDS hybrid monolith $(634.84 \text{ m}^2 \text{ g}^{-1})$. The average content of the bonded 4,5-imidazoledicarboxylic acid on the surface of the monolith was calculated to be 0.89 \mu mol m^2 .

Figures

Fig. S-1. Effect of ACN content on the retention of nucleosides and nucleotide bases on the IDS hybrid monolithic column. Conditions: $20 \text{ mM } \text{NaH}_2\text{PO}_4$ buffer at pH 3.0 with different ACN contents; applied voltage, -15 kV; detection wavelength, 214 nm.

Fig. S-2. Effect of mobile phase pH on the retention of nucleosides and nucleotide bases on the IDS hybrid monolithic column. Conditions: 10 mM $NaH₂PO₄$ buffer at different pH; applied voltage, -15 kV; detection wavelength, 214 nm.

Fig. S-3. Effect of ACN content on the retention of amino acids on the IDS hybrid monolithic column. Conditions: 10 mM NaH₂PO₄ buffer at pH 3.0 with different ACN contents; applied voltage, -20 kV; detection wavelength, 214 nm.

Fig. S-4. Effect of buffer concentration on the retention of amino acids on the IDS hybrid monolithic column. Conditions: various buffer concentrations at pH 3.0; applied voltage, -20 kV; detection wavelength, 214 nm.

Fig. S-5. Effect of mobile phase pH on the retention of amino acids on the IDS hybrid monolithic column. Conditions: 10 mM NaH₂PO₄ buffer at different pH; applied voltage, -20 kV; detection wavelength, 214 nm.

Fig. S-6. Effect of ACN content on the retention of phenols on the IDS hybrid monolithic column. Conditions: 10 mM NaH₂PO₄ buffer at pH 3.0 with different ACN contents; applied voltage, -20 kV; detection wavelength, 214 nm.

Fig. S-7. Effect of buffer concentration on the retention of phenols on the IDS hybrid monolithic column. Conditions: various buffer concentrations at pH 3.0; applied voltage, -20 kV; detection wavelength, 214 nm.

Tables

Table S-1. Retention factors (k') and column efficiencies (N m⁻¹) for nucleoside and nucleotide bases at various phosphate concentrations under the PACEC mode.

Solute	$5 \text{ }\mathrm{mM}$		10 mM			15 mM	
	k'	N m ⁻¹	k'	N m ⁻¹		$N m-1$	
inosine	0.073	98.500	0.081	124 600	0.089	128 800	
thymidine	0.158	78 300	0.155	100 800	0.151	104 500	
hypoxanthine	0.265	124 000	0.422	135 500	0.645	118 000	

Table S-2. Column efficiencies (N m⁻¹) for amino acids at different phosphate concentrations in the mobile phase under the PACEC mode.

Concentration (mM)	L -tyrosine	$_{\rm D,L}$ -phenylalanine	L -tryptophan
	45 500	34 800	16 300
15	69 800	45 800	21 500
25	80 300	55 000	31 800

Table S-3. Column efficiencies (N m⁻¹) for amino acids at different pHs under the PACEC mode.

pН	L-tyrosine	$_{\rm D,L}$ -phenylalanine	L -tryptophan
2.5	82 500	52 500	25 300
3.0	79 300	49 300	24 000
3.5	72.500	47 000	23 500

Table S-4. Column efficiencies (N m⁻¹) for benzoic acid derivatives with different ACN contents in the mobile phase.

Solute	0%	5%	10%	15%	20%
<i>p</i> -hydroxybenzoic acid	1 500	23 100	28 700	40 400	44 200
<i>p</i> -aminobenzoic acid	13 100	27 400	31 000	46 000	49 500
benzoic acid	3 600	6 3 0 0	7 300	11 100	13 200

Table S-5. Column efficiencies (N m⁻¹) for benzoic acid derivatives at different pHs.

Solute	2.5	3.0	3.5	4.0	4.5
<i>p</i> -hydroxybenzoic acid	31 300	29 000	25 300	14 800	8 0 0 0
<i>p</i> -aminobenzoic acid	37 500	33 000	25 500	12 500	7 3 0 0
benzoic acid	10 000	9 3 0 0	7 500	3 800	l 800

Table S-6. Retention factors (k') and column efficiencies $(N \text{ m}^{-1})$ for benzoic acid derivatives at different phosphate concentrations in the mobile phase.

