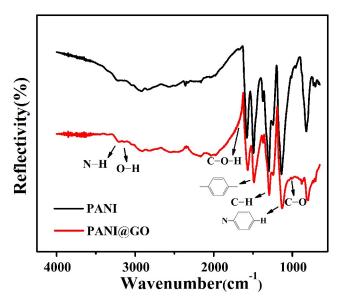
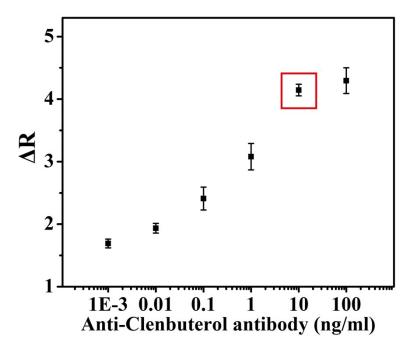
Supporting Information

One-piece Lateral Flow-through Impedimetric Testing Strip for

Label-free Detection of Clenbuterol Hydrochloride


Ling Yu,*^{§abc} ZhuanZhuanShi,^{§abc} YunLi Tian,^{abc} XiaoShuai Wu^{abc} and ChangMing Li^{abc}

^aChongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China


^bInstitute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China

^cChongqing Engineering Research Center for Rapid Diagnosis of Dread Disease, Southwest University, Chongqing, 400715, China

**Corresponding authors: (L.Yu) Tel:* +86-23-68254842; *E-mail: lingyul2@swu.edu.cn § Contribute equally to this work*

sFig.1 The FTIR of polyaniline (PANI) and polyaniline-graphene (PANI@GO) nanocomposites

sFig.2 On-strip direct immunoassay of anti-clenbuterol mAb and OVA-clenbuterol functionalized working electrode (n=3)

Sensing material	Synthesis method	Material composition	Morphology	Application	Label- free	device	Disposable	Ref.
PANI@GO/ITO	One-step co-deposition with constant current: 6mA/cm ² 3min and 3mA/cm ² 15min	0.3M aniline 0.4mg/mL GO 1M HClO ₄	Nanowires	Immune sensor	YES	YES	YES	а
PANI/Au/PWE	Seeds growth AuNPs, 20 cycles of CV in a potential range of -0.1- 0.8V at scan rate of 50 mV·s ⁻¹	10μL growth aqueous solution, 10μM aniline 0.1M H ₂ SO ₄	Nanofibers	Immune sensor	NO	YES	YES	[1]
Concanavalin A /PANI/SWE	Constant potential of 2.0 mV 2min, using glutaraldehyde as a cross linker for immobilizing Concanavalin A	Aniline 1M H ₂ SO ₄ , 200µg/mL Concanavalin A		Detection of bacterial toxin	NO	NO	NO	[2]
HRP/GO@PAN I/ITO	CV in a potential range of 2.0-1.1V at scan rate of 20 mV \cdot s ⁻¹ , using glutaraldehyde as a cross linker for immobilizing HRP	0.2M aniline 50µL GO 1M HCl, 1mg/mL HRP	Porous matrix	Detection of artesunate	NO	NO	NO	[3]
AuNPs/PANI/C S-GS/GCE	Dropped 5µL CS-GS soultion, 6 cycles of CV in a potential range of - 0.2-1.0V at scan rate of 50 mV·s ⁻¹ , deposition of AuNPs at potential of - 0.2 V for 100 s	CS-GS, 0.15 M aniline 0.5M H ₂ SO ₄ , 3 mM HAuCl ₄ 0.1 M KNO ₃		DNA sensor	NO	NO	NO	[4]
PANI/GO/GCE	Dropped 6µL GO soultion, three-step electrochemical deposition: 0.06 mA/cm ² 0.5h, 0.03 mA/cm ² 3h, 0.015 mA/cm ² 3h	2mg/mL GO, 0.5 M aniline 1M HCl	Nanowires	DNA sensor	NO	NO	NO	[5]

sTable 1 Comparison of PANI-based biosensors

a This work; ITO: indium tin oxide; GCE: glass carbon electrode; SPE: screen printed electrode; EIS: electrical impedance spectroscopy; CV: cyclic voltammetry; DPV: differential pulse voltammetry; LSV: liner sweep voltammetry; GCE: glass carbon electrode; PWE: paper work electrode; SWE: steel work electrode.

Reference

1. Li L, Li W, Yang H, Ma C, Yu J, Yan M, et al. Sensitive origami dual-analyte electrochemical immunodevice based on polyaniline/Au-paper electrode and multi-labeled 3D graphene sheets. Electrochimica Acta. 2014;120:102-9.

2. da Silva JS, Oliveira MD, de Melo CP, Andrade CA. Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids and Surfaces B: Biointerfaces. 2014;117:549-54.

3. Radhapyari K, Kotoky P, Das MR, Khan R. Graphene–polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta. 2013;111:47-53.

4. Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, et al. Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosensors and bioelectronics. 2014;51:201-7.

5. Bo Y, Yang H, Hu Y, Yao T, Huang S. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta. 2011;56(6):2676-81.