Sensitive and simple sonoluminescent detection of melamine via

aggregation of Au nanoparticles

Jing Liu,^a Shaohong Feng,^a Yun Shi,^a Jitong Lyu^b and Jiagen Lv^{*a}

^a Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an,
710119, P. R. China. fax: +86 29 81530727, tel: +86 29 81530726, E-mail:
lvjiagen@snnu.edu.cn

^b College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Fig. S1 The schematic diagrams of (A) the SL vial and (B) the SL system. The ceramic transducer was glued to glass vial with epoxy resin; SL vial, filter, and PMT are included in a darkbox.

Fig. S2 The effect of AuNPs contents on SL response to 1.0μ M melamine; interaction time, 5min; ultrasound irradiating duration, 0.1 s; irradiating interval, 8 s; volume of detection solution, 6 mL; PMT biased at -700V.

Fig. S3 The effects of mixing order on SL detection. A. AuNPs + water, then the addition of melamine; B. AuNPs + melamine, then the addition of water; C. water + melamine, then the addition of AuNPs. Melamine, 1.0 μ M; AuNPs, 1.5 mL; interaction time, 5 min; ultrasound irradiating duration, 0.1 s; interval, 8 s; detection solution volume, 6 mL; PMT biased at -700V.

Fig. S4 The effect of detection solution volume on SL response to 1.0μ M melamine; interaction time, 5min; ultrasound irradiating duration, 0.1 s; irradiating interval, 8 s; PMT biased at -700V.