Supporting Information

Mussel inspired redox surface for one step visual and colorimetric detection of Hg²⁺ during the formation of Ag@DOPA@Hg nanoparticles

Yuling Hu,* Dongmei Wang and Gongke Li*

School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou

510275, P. R. China.

*Corresponding Author.

Tel: +86-20-84110922;

E-mail: ceshyl@mail.sysu.edu.cn;

cesgkl@mail.sysu.edu.cn

Figure S1. The absorption spectrum of Ag@DOPA with different reacting time (a), inset graph of A describes the plot of A_{max} against reacting time; The pH of the reacting solution against reacting time (b); the stability of Ag@DOPA: plot of A_{max} of Ag@DOPA against different concentration of Na⁺ (c), pH (d).

Figure S2. XPS survey spectrum of Ag@DOPA and Ag@DOPA@Hg NPs. The concentration of Hg^{2+} was $5\mu M$.

Figure S3. FT-IR spectrum of Ag@DOPA

Figure S4. The absorption spectrum of Ag@DOPA in the presence of 5 μ M Hg²⁺ with different reacting time, inset graph describes the plot of A_{max} against reacting time.