Selective aqueous fluorescent probe for metal ions based on benzoyl hydrazone derivatives

Zhengyu Guo ^a, Haiyan Yu ^a, Wang Ren ^a, Qiusheng Wang ^a *

a Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of

Chemistry & Chemical Engineering, Tianjin University of Technology

Tianjin 300384, China.

* Corresponding author. Tel. : +86 22 60214259. E-mail address: wangqsh@tjut.edu.cn

1. Experimental Section

2. References	-4
1.4. DFT calculations of benzoyl hydrazone based derivatives and the complexes.	-4
1.3. Stability of benzoyl hydrazone-based fluorescent probes.	-3
1.2. Measurements of fluorescence lifetimes	-3
1.1. Calculation of luminescence quantum yields	-3

1. Experimental section

1.1. Calculation of luminescence quantum yields.

The emission quantum efficiency was determined from the slopes of a plot between the fluorescence integral and absorbance at λ_{max} of each compound compared with that of quinine sulfate in 0.1 M H₂SO₄ (for I, III) and rhodamine B in ethanol (for II) used as the standard with the quantum efficiency of 0.55 and 0.65 respectively.¹ The fluorescence quantum yield was measured by using

$$\Phi_{f} = \Phi_{f \times}^{0} \overline{F_{0}}_{S} \frac{A_{0} n_{s}^{2}}{A_{s} n_{0}^{2}}$$
(Formula S 1. 1. 1)

in which F is the integrated fluorescence intensity, A is the absorbance at excitation wavelength, n is the refractive index of the solvent used, the subscript 0 stands for a reference compound and s represents samples.

1.2. Measurements of fluorescence lifetimes.

Measurements of the fluorescence lifetimes were performed with standard time correlated single photon counting method. ² Fluorescence decay curves were recorded for 10s by TCSPC. Typically, a total of $1-1\times10^4$ counts were collected in each decay curve. The fluorescence lifetimes were measured by using

Fit= A+B₁
$$e^{(-\frac{t}{\tau_1})}$$
 $(-\frac{t}{\tau_2})$ $(-\frac{t}{\tau_3})$ $(-\frac{t}{\tau_4})$
 $+B_2e^{(-\frac{t}{\tau_1})}$ $+B_4e^{(-\frac{t}{\tau_4})}$ (Formula S 1.2.1)

to obtain the fluorescence lifetime τ_n (n=1, 2, 3, 4).³

1.3. Stability of benzoyl hydrazone-based fluorescent probes.

The absorption spectra of **I**, **I**-Al³⁺, **II**, **II**-Cu²⁺, **III**, and **III**-Zn²⁺ at time intervals of 0, 2, 6, 12, 24 and 72h in aqueous solution were obtained with an U-3900H spectrophotometer in quartz

absorption cells. The emission spectrum was recorded by F-7000 FL spectrophotometer.

1.4. DFT calculations of benzoyl hydrazone based derivatives and the complexes.

To verify the mechanism of I-Al³⁺, II-Cu²⁺ and III-

Zn²⁺, geometry optimizations were performed by Gaussian 09 program. B3LYP exchangecorrelation functional ⁴ and 6-31G* basis-

set ⁵ were employed. SMD solvation model ⁶ was used to represent water solvent environment.

2. References

- 1. R. F. Kubin, and A. N. Fletcher, J. Lumin., 1982, 27, 455.
- 2. W. Becker., Medial Photonics, 2015, 27, 41.
- 3. X. F. Zhang and Y. K. Zhang, Dyes and Pigments, 2015, 120, 265.
- 4. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623
- 5. P. C. Hariharan, J. A. Pople, Theoret. chim. Acta (Berl.), 1973, 28, 213.
- 6. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.

Summary of Figures

Figure S 1. (left) Fluorescence spectra of probe I (λ_{ex} =380 nm) in the presence of various times in aqueous solution. (right) Fluorescence intensity of probe I at different times in aqueous solution in the absence and presence of Al³⁺.

Figure S 2. (left) Fluorescence spectra of probe II (λ_{ex} =454 nm) in the presence of various times in aqueous solution. (right) Fluorescence intensity of probe II at different times in aqueous solution in the absence and presence of Cu²⁺.

Figure S 3. (left) Fluorescence spectra of probe III (λ_{ex} =343 nm) in the presence of various times in aqueous solution. (right) Fluorescence intensity of probe III at different times in aqueous solution in the absence and presence of Zn²⁺.

Figure S 4. The decay curve of **I** (λ_{abs} =380 nm, λ_{em} =470 nm) in aqueous solution at ambient temperature. By using formula S 1.2.1, the lifetime of **I** was estimated with a single exponential model. Fluorescence lifetime τ_F =297 ns.

Figure S 5. The decay curve of $I-Al^{3+}(\lambda_{abs}=380\text{nm}, \lambda_{em}=470\text{nm})$ in aqueous solution at ambient temperature. By using formula S 1.2.1, the lifetime of $I-Al^{3+}$ was estimated with a single exponential model. Fluorescence lifetime $\tau_F=597$ ns.

Figure S 6. The decay curve of **II** (λ_{abs} =454 nm, λ_{em} =523 nm) in aqueous solution at ambient temperature. By using formula S 1.2.1, the lifetime of **II** was estimated with a single exponential model. Fluorescence lifetime τ_F =269 ns.

Figure S 7. The decay curve of **II**-Cu²⁺ (λ_{abs} =454 nm, λ_{em} =523 nm) in aqueous solution at ambient temperature. By using formula S 1.2.1, the lifetime of **II**-Cu²⁺ was estimated with a single exponential model. Fluorescence lifetime τ_F =368 ns

Figure S 8. The decay curve of **III** (λ_{abs} =343 nm, λ_{em} =503 nm) in aqueous solution at ambient temperature. By using formula S 1.2.1, the lifetime of **III** was estimated with a single exponential model. Fluorescence lifetime τ_F =254 ns.

Figure S 9. The decay curve of **III**-Zn²⁺ (λ_{abs} =343 nm, λ_{em} =503 nm) in aqueous solution at ambient temperature. By using formula S 1.2.1, the lifetime of **III**-Zn²⁺ was estimated with a single exponential model. Fluorescence lifetime τ_F =359 ns

Figure S 10. Optimized structure of **I** and **I**-Al³⁺ by DFT calculation. The Al-N (1) bond length is 2.02 Å, Al-O (1) bond length is 1.99 Å and Al-O (2) bond length is 1.86 Å.

Figure S 11. Optimized structure of **II** and **II**-Cu²⁺ by DFT calculation. The Cu-N (1) bond length is 1.97 Å, Cu-N (2) bond length is 2.01 Å, Cu-O (1) bond length is 1.99 Å, Cu-O (2) bond length is 2.46 Å, Cu-O (3) bond length is 2.09 Å and Cu-O (4) bond length is 2.19 Å.

Figure S 12. Optimized structure of **III** and **III**-Zn²⁺ by DFT calculation. The Zn-N (1) bond length is 2.06 Å, Zn-N (2) bond length is 2.04 Å and Zn-O (1) bond length is 2.02 Å.

Z. Guo et al. Figure S 1.

Z. Guo et al. Figure S 2.

Z. Guo et al. Figure S 3.

Z. Guo et al. Figure S 5.

Z. Guo et al. Figure S 7.

Z. Guo et al. Figure S 8.

Z. Guo et al. Figure S 9.

Z. Guo et al. Figure S 10.

Z. Guo et al. Figure S 11.

Z. Guo et al. Figure S 12.

