Specificity Improvement of Invader Assay by Introducing an Artificially Mismatched Base into the Probe

Yunlong Liu ^{a,†}, Bingjie Zou ^{a,†}, Haiping Wu ^b, Yanan Chu ^a, Guohua Zhou ^{a, b}*

^a Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing

210002, China;

^b Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, China;

^c State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing

University, Nanjing 210093, China.

Corresponding author at: Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, No. 305, East Zhongshan Road, Nanjing 210002, PR China.

E-mail address: ghzhou@nju.edu.cn

†:These authors contributed equally to this work.

Supplementary

 Table S1 Comparison between Invader assay and other close-tube techniques for SNP

 detection.

 Dve-labelled

Methods	Experiment set-up *	Specificity	Dye-labelled
			reporter
Invader assay	++	+++++	Universal
Real-time PCR (TaqMan TM)	+++++	+++	SNP-specific
Allele-specific amplification	++++	++++	SNP-specific
Allele-specific ligation	+++++	+++++	SNP-specific

*The number of "+" means the difficulty for setting up an experiment for detecting SNPs.

Name	Sequence (5'-3')	Tm (°C)	
EDET 1	VIC-TCT T (BHQ1) AG CCG GTT TTC CGG CTA AGA		
FREI-I	CCT CGG CGC G-C6-NH ₂		
FRET-2	FAM-TCT T (BHQ1) AG CCG GTT TTC CGG CTA AGA		
	CTC CGC GTC CGT-C6-NH ₂		
<i>ALDH2</i> *2-F	CCG GGA GTT GGG CGA GTA C	70.1	
<i>ALDH2</i> *2-R	GCC CCC AGC AGG TCC C	71.6	
ALDH2*2-UP	GGG CTG CAG GCA TAC ACT T	69.0	
ALDH2*2-WP-1	CGC GCC GAG GGA AGT GAA AAC TGT GAG TG-	62.3	
	PO ₃		
<i>ALDH2</i> *2-WP-2	CGC GCC GAG GGg AGT GAA AAC TGT GAG TG-PO3	59.6	
<i>ALDH2</i> *2-WP-3	CGC GCC GAG GGA gGT GAA AAC TGT GAG TG-PO3	58.8	
<i>ALDH2</i> *2-WP-4	CGC GCC GAG GGA AaT GAA AAC TGT GAG TG-PO3	56.9	
<i>ALDH2</i> *2-WP-5	<u>CGC GCC GAG G</u> GA AGT GAA AAC TGT GAG gG -	60.1	
	PO ₃		
<i>ALDH2</i> *2-WP-6	CGC GCC GAG GGc AGT GAA AAC TGT GAG TG-PO3	57.4	
<i>ALDH2</i> *2-WP-7	CGC GCC GAG GGt AGT GAA AAC TGT GAG TG-PO ₃	57.2	
41 DU12*2 MD	ACG GAC GCG GAG AAA GTG AAA ACT GTG AGT	62.6	
$ALD\Pi 2^{+}2$ -MP	G-PO ₃		

 Table S2 Oligonucleotides used for PCR or Invader reaction.

wild-type and mutant in Invader reactions, respectively. ALDH2*2-F, R are paired PCR primers. ALDH2*2-UP is an invasive oligo used for Invader reactions. ALDH2*2-WP (Wild Probe), MP (Mutant Probe) are detection probes for wild-type and mutant respectively. Underlined nucleotides are sequence-tags for different alleles. Italic lowercase are artificially mismatched bases.

Notes: FRET-1, 2 are fluorescence resonance energy transfer (FRET) probes used for reporting

Supplementary Figure Captions

Fig. S1 Fluorescence signals of *ALDH2**2 polymorphisms assay. A: Fluorescence intensities of three genotypes detected by end-point Invader Plus assay. The signal of VIC was specific to allele *1 and the signal of FAM was specific to allele *2. B: Fluorescence intensity curves of an *ALDH2* *2*2 homozygote by real-time Invader Plus assay.

Fig. S2 The real-time fluorescence intensity curves of *ALDH2* *2*2 homozygotes by using different concentrations of *Afu* flap endonuclease. a-e were specific signals detected by using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. f and f' were blank controls.

Fig. S3 The real-time fluorescence signal curves of an *ALDH2* *1*1 homozygotes and a *2*2 homozygotes with different concentrations of probe 1 for allele *1. a-c were specific signals of a *1*1 homozygotes with 500, 250, 125 nmol/L probe 1, respectively. a'-c' were non-specific signals of a *2*2 homozygotes with 500, 250, 125 nmol/L probe 1, respectively.

Fig. S4 The distribution of Allele*1 : Allele*2 ratios using the complementary probe of WP-1 (A) and the mismatched probe of WP-2 (B). The FOZ value and the ratio can be calculated as following

 $FOZ = \frac{Raw \ counts \ from \ sample}{Raw \ counts \ from \ No \ Template \ Control}, Ratio = \frac{(Net \ Allele \ * \ 1 \ FOZ)}{(Net \ Allele \ * \ 2 \ FOZ)}.$ The Net Allele FOZ=FOZ-1.

Fig. S5 The typical results of the three genotypes using commercial Sanger sequencing (Left) and the real-time improved-Invader Plus method (Right). The arrows show the *ALDH2**2 polymorphism site in Sanger sequencing.

Supplementary Figures

Fig. S1 Fluorescence signals of *ALDH2**2 polymorphisms assay. A: Fluorescence intensities of three genotypes detected by end-point Invader Plus assay. The signal of VIC was specific to allele *1 and the signal of FAM was specific to allele *2. B: Fluorescence intensity curves of an *ALDH2**2*2 homozygote by real-time Invader Plus assay.

Fig. S2 The real-time fluorescence intensity curves of *ALDH2* *2*2 homozygotes by using different concentrations of *Afu* flap endonuclease. a-e were specific signals detected by using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. a'-e' were non-specific signals detected by allele*1-specific probes when using 6.68, 2.67, 1.34, 0.89, 0.67 ng/ μ L *Afu* flap endonuclease, respectively. f and f' were blank controls.

Fig. S3 The real-time fluorescence signal curves of an *ALDH2* *1*1 homozygotes and a *2*2 homozygotes with different concentrations of probe 1 for allele *1. a-c were specific signals of a *1*1 homozygotes with 500, 250, 125 nmol/L probe 1, respectively. a'-c' were non-specific signals of a *2*2 homozygotes with 500, 250, 125 nmol/L probe 1, respectively.

Fig. S4 The distribution of Allele*1 : Allele*2 ratios using the complementary probe of WP-1 (A) and the mismatched probe of WP-2 (B). The FOZ value and the ratio can be calculated as

following formulas:

$$FOZ = \frac{Raw \ counts \ from \ sample}{Raw \ counts \ from \ No \ Template \ Control}, Ratio = \frac{(Net \ Allele * 1 \ FOZ)}{(Net \ Allele * 2 \ FOZ)}.$$
 The Net Allele

FOZ=FOZ-1.

Fig. S5 The typical results of the three genotypes using commercial Sanger sequencing (Left) and the real-time improved-Invader Plus method (Right). The arrows show the *ALDH2**2 polymorphism site in Sanger sequencing.