Electronic Supplementary Information

Conformational switch of G-quadruplex as a label-free platform for

fluorescence detection of Ag⁺ and biothiol

Xiaoli Yang, Wei Wei, Jianhui Jiang*, Guoli Shen, Ruqin Yu*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

> *Corresponding author Tel: 86-731-88822577. Fax: 86-731-88822872

E-mail address: jianhuijiang@hnu.edu.cn; rqyu@hnu.edu.cn.

Procedures for Ag⁺ Detection in local tap water and Xiang River

The 300 nM probe P1 (22AG human telomeric DNA) was dissolved with 10 mM Tris-HAc buffer (pH=7.0) containing 50 mM KAc. The DNA solution was heated to 95 °C for 5 min and then cooled down slowly to room temperature. 3 μ M ThT was added to this DNA solution, which was incubated at 37 °C for another 15 min. Afterwards, the actual samples (local tap water and water from Xiang River) were previously disposed with 0.22 μ m filter membrane (Millipore, Merck), then added to the mixture and incubated at 37 °C for 20 min. The fluorescence spectra of the mixture were recorded at room temperature in a quartz cuvette.

Procedures for Cys Detection.

The 300 nM probe P1 (22AG human telomeric DNA) was dissolved with 10 mM Tris-HAc buffer (pH=7.0) containing 50 mM KAc. The DNA solution was heated to 95 °C for 5 min and then cooled down slowly to room temperature. Fistly, 3 μ M ThT was added to this DNA solution and incubated at 37 °C for another 15 min. Then 3.5 μ M of freshly prepared Ag⁺ was added to the mixture and freshly prepared Cys of different concentrations was then mixed together. The mixture was allowed to react at 37 °C for 20 min. The fluorescence spectra of the mixture were recorded at room temperature in a quartz cuvette.

Table S1. Sequences of DNA oligonucleiotides

Name	Sequences (5'-3')
P1 (the 22AG human	AGGGTTAGGGTTAGGGTTAGGG
telomeric DNA)	
P2	TGGGTAGGGCGGGTTGGGAAA
P3	AGGGTTAGGGTTAGGGTTAGGGCTCAACATC

Fig. S1. Optimization of DNA probes. Fluorescence intensity obtained from ThT only (black); P1 incubated with ThT (red); P1 incubated with ThT and Ag⁺ (blue). (ThT 3 μ M, P1 300 nM, Ag⁺ 3.5 μ M, in 10 mM Tris-HAc buffer (pH=7.0)).

Fig. S2. Fluorescence (A, B) and absorption (C, D) spectra of ThT with P1 under different buffer conditions. (A and B correspond to the presence and absence of K⁺ respectively. ThT (Purple line); P1 + ThT (black line); P1 + ThT + Ag⁺ (red line); P1 + ThT + Ag⁺ + GSH (blue line). (ThT 3 μ M, P1 300 nM, Ag⁺ 3.5 μ M, GSH 3.6 μ M in 10 mM Tris-HAc buffer (pH=7.0)). C and D correspond to the presence and absence of K⁺ respectively. ThT (Black line); P1 + ThT (red line); P1 + ThT + Ag⁺ (blue line); P1 + ThT + Ag⁺ + GSH (purple line). (ThT: 100 μ M, P1: 10 μ M, Ag⁺: 116.7 μ M, GSH: 120 μ M in 10 mM Tris-HAc buffer (pH=7.0)).

Fig. S3. CD measurements. (A): (red and black line are in the presence and absence K⁺ respectively) P1 + ThT (ThT: 100 μ M, P1: 10 μ M in 10 mM Tris-HAc buffer); (B) CD spectra of P1 under different conditions in 10 mM Tris-HAc buffer: P1 (red line); P1 + ThT (purple line); P1 + ThT + Ag⁺ (black line); P1 + ThT + Ag⁺+ GSH (blue line). (ThT: 100 μ M, P1: 10 μ M, Ag⁺: 116.7 μ M, GSH: 120 μ M)

Fig. S4. (A) The optimized concentration of ThT. (P1: 300 nM); (B) Influence of the concentration of K⁺. (ThT: 3 μ M, P1: 300 nM).

Fig. S5. The effects of temperature and pH of the reaction buffer. Probe incubated with ThT (gray); probe incubated with ThT and Ag⁺ (red). (ThT: 3 μ M; P1: 300 nM; Ag⁺: 3.5 μ M)

Fig. S6. Selectivity of the method for the detection of Ag⁺. The concentration of Ag⁺ and other metal ions is 3.5 μ M (P1: 300 nM, ThT: 3 μ M).

Fig. S7. Detection of Ag⁺ from local tap water and Xiang River. Fluorescence emission spectra of ThT under different conditions: ThT: (purple line); P1 + ThT: (black line); P1 + ThT + treated Xiang River: (blue line); P1 + ThT + treated tap water: (olive line). (ThT: 3 μ M, P1: 300 nM, in 10 mM Tris-HAc buffer (pH=7.0) containing 50 mM KAc). From the figure and the calibration equation of Ag⁺, we could know that the content of Ag⁺ in the Xiang River water and local tap water samples were 22.4 nM and 42.9 nM respectively.

Fig. S8. Selectivity of the method for the detection of GSH. (P1: 300 nM, Ag⁺: 3.5 μ M, GSH: 3.6 μ M).

Fig. S9. Feasibility of the sensing system for the quantitative determination of Cys. (ThT: 3 μ M, P1: 300 nM, Ag⁺: 3.5 μ M)

Fig. S10. Sensitivity of the method for the detection of Cys. (ThT: 3 μ M, P1: 300 nM, Ag⁺: 3.5 μ M). A linear relationship (correlation coefficient R² =0.9992) was obtained at Cys concentration in the range of 50-2000 nM with the detection limit of 11 nM.

Fig. S11. Selectivity of the method for the detection of Cys. (ThT: 3 μ M, P1: 300 nM, Ag⁺: 3.5 μ M, Cys: 2 μ M)

Fig. S12. A kinetic experiment of the method for the detection of Ag⁺. (ThT: 3 μ M, P1: 300 nM, Ag⁺: 3 μ M)

