# Supplementary materials

#### Mixed hemi/ad-micelle SDS-coated magnetic Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> (x=0.4) nanoparticles for the

## capture of gatifloxacin and prulifloxacin coupled with fluorimetric determination

Juanli Du, Hao Wu\*, Yu An, Yating Shi, Xiaozhen Guo, Liming Du\*

School of Chemistry and Material Science, Shanxi Normal University, Shanxi Linfen, P.R.

China 041004

\*Corresponding author: Hao Wu

School of Chemistry and Material Science, Shanxi Normal University, Shanxi Linfen, P.R.

China 041004

Tel.: +86 357 2057969

Fax: +86 357 2057969

E-mail: <u>fxcszx@163.com</u>

\*Corresponding author: Liming Du

School of Chemistry and Material Science, Shanxi Normal University, Shanxi Linfen, P.R.

China 041004

Tel.: +86 357 2057969

Fax: +86 357 2057969

E-mail: <u>lmd@dns.sxnu.edu.cn</u>

#### Apparatus

The Fe<sub>3</sub>O<sub>4</sub> MNPs and Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs structural and morphological characterizations were carried out using Philips PW 3710 X-ray diffractometer with CrK $\alpha$  radiation. Transmission electron microscopy (TEM) measurements were carried out using a JEM-2100 at 100 kV machine. The energy dispersive X-ray analysis (EDAX) was investigated by scanning electron microscopy (SEM) coupled with an energy dispersive X-ray spectroscopy unit.

## Characterization of the Fe2-xAlxO3 MNPs

The adsorbents must possess superparamagnetic properties to achieve rapid separation under a magnetic field. Fig. S1 shows the magnetization curves for the Fe<sub>3</sub>O<sub>4</sub> MNPs and Fe<sub>2</sub>. <sub>x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs at room temperature. Both the Fe<sub>3</sub>O<sub>4</sub> MNPs and Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs exhibit typical superparamagnetic behaviour due to the lack of hysteresis. The large saturation magnetization was 48.7 emu·g<sup>-1</sup> for the Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs and 70.8 emu·g<sup>-1</sup> for the Fe<sub>3</sub>O<sub>4</sub> MNPs, which makes them very susceptible to magnetic fields. Fig. S2 shows the SEM image of the Fe<sub>3</sub>O<sub>4</sub> MNPs and Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs, which illustrates the uniform size distribution of these nanoparticles. The diameter of the Fe<sub>3</sub>O<sub>4</sub> MNPs was in the 40-50 nm range, and the diameter of the Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs was slightly larger. Therefore, the Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs leads to a decrease in the magnetic strength of Fe<sub>3</sub>O<sub>4</sub> MNPs and an increase in the particle diameter of the Fe<sub>3</sub>O<sub>4</sub> MNPs.

The crystal phases of Fe<sub>3</sub>O<sub>4</sub> MNPs Al<sub>2</sub>O<sub>3</sub> and Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs were compared using XRD, and the obtained XRD patterns are shown in Fig. S3. The diffraction pattern is in good agreement with the JCPDS file for Fe<sub>3</sub>O<sub>4</sub>, which indicated that the Fe<sub>3</sub>O<sub>4</sub> nanoparticles are well cubic-crystals. For the Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs, a clear broad peak (at 45.7°, 70.2° and 73.6°)

corresponding to  $Fe_3O_4$  can be observed. The results strongly suggest that Al was successfully doped into the  $Fe_3O_4$  MNPs. The compositional analysis of the  $Fe_{2-x}Al_xO_3$  MNPs was carried out with the aid of EDAX, which is shown in Fig. S4. Based on this study, the prepared MNPs are composites of Al, Fe and O. Fig. S1 VSM magnetization curves of Fe<sub>3</sub>O<sub>4</sub> MNPs and Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs.



Fig. S2 SEM image of (a)  $Fe_3O_4$  MNPs and (b)  $Fe_{2-x}Al_xO_3$  MNPs.



Fig. S3 XRD patterns of Fe<sub>3</sub>O<sub>4</sub> MNPs and Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs.



Fig. S4 EDAX spectrum of Fe<sub>2-x</sub>Al<sub>x</sub>O<sub>3</sub> MNPs.



Fig. S5 Comparison of  $Fe_3O_4$  MNPs and  $Fe_{2-x}Al_xO_3$  MNPs. The extraction efficiency of  $Fe_{2-x}Al_xO_3$  MNPs was better than that of  $Fe_3O_4$  MNPs.



Fig. S6 Effect of the amount of NaCl. The amount of  $Fe_{2-x}Al_xO_3$  MNPs was 8 mg or 15 mg, and 0.05-0.3 g of NaCl were added. Extraction conditions: SDS concentration, 40 mg·mL<sup>-1</sup>, extraction time, 8 min, desorption solvent volume 0.5 mL, desorption time, 7 min, sample pH 5.0 for GTFX and PUFX.

