Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

A New Chiral $C_1\mbox{-}Symmetric \ NHC\mbox{-}Catalyzed \ Addition \ to \ \alpha\mbox{-}Aryl \ Substituted$

α , β -Disubstituted Enals: Enantioselective Synthesis of Fully Functionalized

Dihydropyranones

Hong Lu, Jin-Yu Liu, Chen-Guang Li, Jun-Bing Lin, Yong-Min Liang and Peng-Fei Xu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

Contents

1. General Information	S3
2. Preparation and Spectral Data of α -Aryl Substituted α , β -Disubstituted Aldehydes	S4
2.1 General Procedure for α -Aryl Substituted α , β -Disubstituted Aldehydes	S4
2.2 Spectral Data of Substrates	
3. General Procedure for the Synthesis of Chiral N-Heterocyclic Carbene Catalysts	S9
4. General Procedure and Spectral Data of Products	S13
4.1 General Procedure for the Synthesis of Dihydropyranones	S13
4.2. Analytical data of Dihydropyranones	S14
5. X-ray Crystallographic Data	S25
6. NMR and HPLC spectrogram	S26

1. General Information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silicycle silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz¹H, 100 MHz¹³C). The spectra were recorded in CDCl₃ as the solvent at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.00 ppm) or TMS (¹H) ($\delta = 0$ ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ${}^{13}C$ NMR are reported as chemical shift. IR spectra were recorded using Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). HRMS were performed on Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with employing a Daicel Chirapak AD-H/OD-H/OJ-H on Agilent 1100 series and Waters 600 Deltaeluting with *i*-PrOH and *n*-hexane. Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is in g/100 mL.

2. Preparation and Spectral Data of α-Aryl Substituted α,β-Disubstituted Aldehydes

2.1 General Procedure for α-Aryl Substituted α,β-Disubstituted Aldehydes

A solution of **S1** (35 mmol) of α -bromo ketone and 15.0g (220 mmol) of sodium formate in 90 mL 85% ethanol was heated to reflux for 12h. After the reaction was completed, the mixture was cool to ambient temperature, and ethanol was removed in *vacuo*, diluted with water (20 mL), aqueous layer was extracted with ethyl acetate (3 × 40 mL), and the combined organic phases were dried over Na₂SO₄, filtered and concentrated. The ketols **S2** were recrystallized from 95% ethanol.

A 250 mL flame-dried round bottom flask was charged with **S2** (22 mmol) and *p*-toluenesulfonicacid 230 mg (1.1 mmol) under a dry N₂ atmosphere. After DCM (130 mL) was added to the flask, the mixture was cooled to 0 °C. 3,4-2H-dihydropyran (DHP) 9.26 g (110 mmol) was then added dropwise to the mixture. After a further 2 hours of stirring at 0 °C (determined by TLC), the reaction mixture was quenched with saturated NaHCO₃. The organic layer was separated and the aqueous layer was extracted into DCM (3×20 mL). The combined organics were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*, and purified with flash chromatography (eluent, ethyl acetate/petroleum ether 1/9) to yield crude product **S3**.

The crude product **S3** (10 mmol) was dissolved in acetonitrile (20 mL) in a 50 mL round bottom flask, ethyl 2-(triphenylphosphoranylidene)acetate 4.0 g (12 mmol) was added to the solution. The mixture was refluxed for 12 h. The mixture was evaporated to distill off one third of acetonitrile, and then continued to react for about 12 h (determined by TLC) until the reaction was complete. Solvent was distilled off, the concentrate was extracted with ether and washed with water. The combined organicswere dried over Na₂SO₄, filtered, and concentrated in *vacuo*, and purified with flash chromatography (eluent, ethyl acetate/petroleum ether 1/9) to yield crude coupling product **S4**. The crude product S4 (7.5 mmol) was dissolved in MeOH (40 mL) and then cooled to 0 °C. *p*-Toluenesulfonic acid 71.3 mg (0.375 mmol) was added to the mixture. The reaction was brought to ambient temperature. After afurther 3 hours of stirring at ambient temperature (determined by TLC), the reaction mixture was quenched with saturated NaHCO₃ at 0 °C. MeOH was distilled off, and the concentrate was extracted with ethyl acetate (3×20 mL). The combined organics were washed with brine, dried over Na₂SO₄, filtered, and concentrated in *vacuo*, yielding S5 that was used directly without further purification in the next step.

To a stirred solution of **S5** (5 mmol) in CH_2Cl_2 (50 ml) was added MnO_2 (55 mol) at room temperature. After completion of the reaction (monitored by TLC), MnO_2 was removed, and the organic layers were concentrated in *vacuo*, the crude product was purified by silica gel column chromatography using (eluent, ethyl acetate/petroleum ether 1/8) to afford pure α,β -unsaturated aldehyde **1** as light yellow liquid.

2.2 Spectral Data of Substrates

Etocc (E)-ethyl 4-oxo-3-phenylbut-2-enoate (1a) ¹H NMR (400 MHz, CDCl₃): δ = 9.73 (s, 1H), 7.40–7.36 (m, 3H), 7.25–7.20 (m, 2H), 6.69 (s, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 192.7, 165.0, 149.3, 136.0, 131.2, 128.9, 128.8, 127.8, 61.1, 13.6.

F O

EXAMPLE 1 (E)-ethyl 3-(2-fluorophenyl)-4-oxobut-2-enoate (1b) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.74$ (s, 1H), 742–7.36 (m, 1H), 7.19–7.14 (m, 2H), 7.10 (t, 1H), 6.84 (s, 1H), 4.17–4.12 (d, J = 7.2 Hz, 2H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.7$, 164.3, 160.7, 158.3, 144.6, 137.8, 130.9, 130.89, 130.7, 130.69, 123.64, 123.61, 119.5, 119.3, 115.4, 115.2, 61.3, 13.7.

EXAMPLE 1 (E)-ethyl 3-(3-chlorophenyl)-4-oxobut-2-enoate (1c)¹ H NMR (400 MHz, CDCl₃): $\delta = 9.75$ (s, 1H), 7.40–7.34 (m, 1H), 7.13–7.08 (td, J = 2.4 Hz, J = 3.6 Hz, 1H), 7.00–6.94 (m, 2H), 6.74 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ = 192.1, 164.6, 163.4, 160.9, 148.2, 137.0, 133.2, 133.1, 129.5, 129.46, 124.7, 116.2, 116.0, 115.8, 61.3, 13.7.

CDCl₃): $\delta = 9.73$ (s, 1H), 7.39–7.31 (m, 2H), 7.22 (s, 1H), 7.11 (d, J = 7.6 Hz, 1H), 6.73 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.1$, 164.5, 148.1, 137.0, 133.7, 132.8, 129.1, 129.0, 128.9, 127.1, 61.4, 13.7. Br EFOOC (E)-ethyl 3-(3-bromophenyl)-4-oxobut-2-enoate (1e) ¹H NMR (400 MHz, CDCl₃): $\delta = 0.70$ (L) $\delta = 0.70$ (L) (L) (L) $\delta = 0.70$ (L) (L)

(E)-ethyl 3-(3-chlorophenyl)-4-oxobut-2-enoate (1d) ¹H NMR (400 MHz,

CDCl₃): $\delta = 9.70$ (s, 1H), 7.53–7.50 (m, 1H), 7.37 (t, J = 2.0 Hz, 1 H), 7.26 (t, J = 8.0 Hz, 1H), 7.16–7.13 (m, 1H), 6.72 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.0$, 164.4, 147.8, 137.0, 133.0, 131.8, 131.7, 129.3, 127.5, 121.7, 61.3, 13.7.

EtOOC

EXAMPLE 1 (E)-ethyl 4-oxo-3-(m-tolyl)but-2-enoate (1f) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.74$ (s, 1H), 7.27 (q, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 7.6 Hz, 2H), 6.68 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 2.36 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.8$, 165.1, 149.5, 137.5, 135.8, 131.1, 129.8, 129.4, 127.9, 125.9, 61.1, 21.3, 13.7.

EXAMPLE 1 (E)-ethyl 3-(3-methoxyphenyl)-4-oxobut-2-enoate (1g) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.74$ (s, 1H), 7.30 (t, J = 8.0 Hz, 1H), 6.94 (dd, J = 2.4 Hz, J = 8.4 Hz, 1H), 6.81–6.77 (m, 1H), 6.70 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.80 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.5$, 165.0, 159.1, 149.1, 136.0, 132.5, 129.1, 121.2, 114.6, 114.5, 61.2, 55.2, 13.8.

EXAMPLE 1 (E)-ethyl 3-(4-fluorophenyl)-4-oxobut-2-enoate (1h) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.74$ (s, 1H), 7.26–7.21 (m, 2H), 7.11–7.07 (m, 2H), 6.71 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.6$, 164.8, 164.4, 161.9, 148.6, 136.6, 131.1, 131.0, 126.9, 126.8, 115.2, 115.0, 61.3, 13.8.

EXAMPLE 1 (E)-ethyl 3-(4-chlorophenyl)-4-oxobut-2-enoate (1i) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.73$ (s, 1H), 7.38 (dd, J = 2.0 Hz, J = 6.8 Hz, 2H), 7.16 (dd, J = 1.6 Hz, J = 6.8 Hz, 2H), 6.71 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.4$, 164.7, 148.5, 136.7, 135.2, 130.4, 129.4, 128.2, 61.4, 13.8.

CI

H₃C

H₃CO

EtO

EXAMPLE 1 (E)-ethyl 3-(4-bromophenyl)-4-oxobut-2-enoate (1g) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.73$ (s, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.72 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.3$, 164.7, 148.6, 136.7, 131.2, 130.7, 130.0, 123.5, 61.4, 13.8.

EXAMPLE 1 (E)-ethyl 4-oxo-3-(p-tolyl)but-2-enoate (1k) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.73$ (s, 1H), 7.20 (d, J = 7.6 Hz, 2H), 7.13 (m, 2H), 6.66 (s, 1H), 4.14 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.9$, 165.1, 149.4, 139.0, 135.5, 128.8, 128.6, 128.1, 61.1, 21.3, 13.8.

EXAMPLE 1 (E)-ethyl 3-(4-methoxyphenyl)-4-oxobut-2-enoate (11) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.70$ (s, 1H), 7.21 (dd, J = 2.0 Hz, J = 6.8 Hz, 2H), 6.92 (dd, J = 2.0 Hz, J = 6.8 Hz, 2H), 6.63 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.3$, 165.2, 160.3, 148.9, 135.2, 130.6, 123.0, 113.4, 61.1, 55.2, 13.9.

EXAMPLE 1 (E)-ethyl 3-(4-ethoxyphenyl)-4-oxobut-2-enoate (1m) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.70$ (s, 1H), 7.21 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.62 (s, 1H), 4.17

(q, J = 7.2 Hz, 2H), 4.06 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.3$, 165.3, 159.8, 148.8, 135.1, 130.6, 122.9, 114.0, 63.4, 61.1, 14.7, 13.9.

^{C_gH₁₁ Etooc (E)-ethyl 4-oxo-3-(4-pentylphenyl)but-2-enoate (1n) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.75$ (s, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.16 (t, J = 1.6 Hz, J = 6.4 Hz, 2H), 6.66 (s, 1H), 4.17 (q, J = 7.2 Hz, 2H), 2.64 (t, J = 7.6 Hz, J = 8 Hz, 2H), 1.67–1.59 (m, 2H), 1.37–1.31 (m, 4H), 1.15 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 6.8 Hz, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.0$, 165.2, 149.4, 144.1, 135.5, 128.9, 128.3, 128.0, 61.2, 35.8, 31.5, 30.9, 22.5, 14.0, 13.8.}

EXAMPLE 1 (E)-ethyl 3-(4-cyclohexylphenyl)-4-oxobut-2-enoate (10) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.76$ (s, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8 Hz, 2H), 6.66 (s, 1H), 4.16–4.11 (q, J = 7.2 Hz, 2H), 2.54–2.49 (m,1H), 1.89–1.83 (m, 4H), 1.76 (d, J = 8.4 Hz, 1H), 1.47–1.34 (m, 4H), 1.29–1.24 (m, 1H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.1$, 165.3, 149.3, 149.2, 135.5, 129.0, 128.5, 126.5, 61.2, 44.4, 34.3, 26.8, 26.1, 13.8.

H₃C H₃C H₃C

EXAMPLE 13-(3,4-dimethylphenyl)-4-oxobut-2-enoate (1p) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.73$ (s, 1H), 7.16 (d, J = 7.6 Hz, 2H), 7.00–6.96 (m, 2H), 6.65 (s, 1H), 4.18–4.12 (q, J = 7.2 Hz, 2H), 2.27 (d, 6H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.1$, 165.2, 149.5, 137.8, 136.1, 135.3, 129.9, 129.3, 128.6, 126.4, 61.1, 19.7, 19.6, 13.8.

H₃CO H₃CO H₃CO H₃CO

EXAMPLE 13-(3,4-dimethoxyphenyl)-4-oxobut-2-enoate (1q) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.76$ (s, 1H), 6.91–6.81 (m, 3H), 6.66 (s, 1H), 4.20–4.14 (q, J = 7.2 Hz, 2H), 3.91 (s, 3H), 3.87 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.1, 165.3, 149.8, 148.5, 148.4, 135.4, 123.5, 122.2, 112.5, 110.6, 61.1, 55.8, 13.9.$

O H

Etooc (E)-ethyl 3-(naphthalen-2-yl)-4-oxobut-2-enoate (1r) ¹H NMR (400 MHz, CDCl₃): δ = 9.73 (s, 1H), 7.81–7.77 (m, 3H), 7.70 (s, 1H), 7.45–7.40 (m, 2H), 7.27 (dd, *J* = 1.2 Hz, *J* = 8.4 Hz, 1H), 6.67 (s, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 192.6, 164.8, 149.0, 136.1, 133.1, 132.5, 128.6, 128.5, 128.1, 127.5, 127.2, 126.5, 126.3, 126.0, 60.9, 13.5.

H₃CO O H

BnOCC² (E)-benzyl 3-(4-methoxyphenyl)-4-oxobut-2-enoate (1s) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.71$ (s, 1H), 7.31 (t, J = 3.2 Hz, 3H), 7.19–7.15 (m, 4H), 6.87–6.84 (m, 2H), 6.65 (s, 1H), 5.12 (s, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.1$, 165.1, 160.3, 149.1, 134.9, 134.7, 130.6, 128.4, 128.36, 123.0, 113.5, 66.9, 55.1.

^d (E)-4-chlorobenzyl 3-methyl-4-oxobut-2-enoate (1x) ¹H NMR (400 MHz, CDCl₃): $\delta = 9.55$ (s, 1H), 7.38–7.82 (m, 4H), 6.54–6.53 (m, 1H), 5.21 (s, 2H), 2.88 (d, J = 1.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.3$, 165.1, 151.2, 134.7, 134.5, 133.7, 129.8, 128.9, 66.0, 10.9.

3. General Procedure for the Synthesis of Chiral N-Heterocyclic Carbene Catalysts

A flame-dried, round-bottom flask equipped with reflux condenser was charged with $Pd(OAc)_2$ (89 mg, 0.4 mmol), *rac*-binap (498 mg, 0.8 mmol), NaOt-Bu (769 mg, 8.0 mmol), **C1**(4.0 mmol), and (*S*,*S*)-1,2-diphenyl ethylenediamine (1.3 g, 6.0 mmol) under a dry N₂ atmosphere. Toluene (70 mL) was added to the mixture. After 10 hours at 100 °C, the solution was allowed to cool to room temperature, passed through a plug of Celite, concentrated, and purified by silica gel chromatography (eluent, ethyl acetate/petroleum ether 1/1) to afford productdiamine **C2** as light yellow oil.

Diamine C2 (3.0 mmol) was added to aflame-dried, round-bottom flask charged with $Pd(OAc)_2$ (67 mg, 0.3mmol), *rac*-binap (373 mg, 0.6 mmol), NaOt-Bu (578 mg, 6.0mmol), mesityl bromide (598 mg, 3.0mmol) under a dry N₂ atmosphere. Toluene (70 mL) was added

to the mixture. After 12 hours at 110 °C, the solution was allowed to cool to room temperature and then passed through a plug of Celite, concentrated, and purified by silica gel column chromatography (eluent, petroleum ether/Et₂O 20/1) to afford product **C3**.

A flame-dried, round-bottom flask equipped with a short path distillation set was charged with diamine **C3** (2.07mmol), HC(OEt)₃ (13 mL), and NH₄BF₄ (325 mg, 3.10mmol). After 3 hours at 115 °C, the solution was allowed to cool to room temperature, concentrated, and purified by silicagel column chromatography (eluent, petroleum ether/EtOAc 1/3) to afford the corresponding imidazolinium salt, which was triturated (hexane/CH₂Cl₂) to a white solid.

(4S,5S)-1-([1,1'-biphenyl]-2-yl)-3-mesityl-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium (5e)

⁵Ph BF₄ IR(KBr): 703, 759, 1065, 1220, 1261, 1456, 1959, 1618, 1710, 3062, 3432 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.74$ (s, 1H), 7.79–7.77 (m, 1H), 7.69–7.67 (m, 3H), 7.49(d, J = 3.2 Hz, 2H), 7.37–7.25 (m, 10H), 7.15 (t, J = 7.6 Hz, 2H), 6.91(s, 1H),6.67(s, 1H), 6.59(d, J = 7.6 Hz, 2H), 5.42(d, J = 9.6 Hz, 1H), 5.27(d, J = 9.6 Hz, 1H), 2.53(s, 3H), 2.18(s, 3H), 1.81(s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.5$, 140.1, 138.6, 137.9, 135.2, 134.8, 134.3, 131.7, 131.4, 131.0, 130.4, 130.3, 130.1, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4, 129.1, 128.9, 128.7, 128.6, 128.4, 127.8, 75.1, 72.5, 20.9, 18.7, 17.9. HRMS (ESI): [M]⁺ calcd for [C₃₆H₃₃N₂]: 493.2638, found: 493.2630.

(4S,5S)-1-(3',5'-dimethyl-[1,1'-biphenyl]-2-yl)-3-mesityl-4,5-diphenyl-4,5-dihydro-1H-im idazol-3-ium (5f)

Me IR(KBr): 701, 1060, 1222, 1266, 1456, 1621, 1959, 2920, 3061, 3438 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.73 (s, 1H), 7.77−7.75 (m, 1H), 7.39−7.09 (m, 13H), 6.91 (s, 1H), 6.66 (s, 1H), 6.60 (d, J = 7.6 Hz, 2H), 5.43 (d, J = 9. 2 Hz, 1H), 5.36 (d, J = 9.2 Hz, 1H), 2.55 (s, 3H), 2.48 (s, 6H), 2.18 (s, 3H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.2, 140.1, 139.3, 138.5, 138.1, 135.0, 134.9, 134.6, 132.0, 131.3, 131.0, 130.4, 130.1, 130.0, 129.8, 129.6, 129.3, 129.2, 128.9, 128.5, 128.3, 127.7, 126.7, 74.9, 72.3, 21.3, 20.8, 18.6, 17.7. HRMS (ESI): [M]⁺ calcd for [C₃₈H₃₇N₂]: 521.2951, found: 521.2952. (4S,5S)-1-(3',5'-di-tert-butyl-[1,1'-biphenyl]-2-yl)-3-mesityl-4,5-diphenyl-4,5-dihydro-1H -imidazol-3-ium (5h)

^{TBu} IR(KBr): 697, 1065, 1222, 1268, 1455, 1619, 1959, 2959, 3063, 3437 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.74$ (s, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.75 (s, 1H), 7.41–7.13 (m, 16H), 6.91 (s, 1H), 6.63 (s, 1H), 6.47 (d, J = 6.4 Hz, 2H), 5.71 (d, J = 8.4 Hz, 1H), 5.31 (d, J = 8.4 Hz, 1H), 2.45 (s, 3H), 2.19 (s, 3H), 1.65 (s, 3H), 1.40 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.4$, 152.0, 140.2, 139.0, 138.1, 135.3, 134.9, 132.0, 131.6, 131.5, 130.4, 130.3, 130.0, 129.7, 129.6, 129.5, 129.1, 128.8, 128.6, 128.3, 127.4, 123.1, 123.0, 75.2, 72.1, 35.1, 31.5, 20.9, 18.5, 18.2. HRMS (ESI): [M]⁺ calcd for [C₄₄H₄₉N₂]: 605.3890, found: 605.3887.

(4S,5S)-3-mesityl-1-(2-(naphthalen-2-yl)phenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3 -ium (5i)

IR(KBr): 702, 784, 1061, 1220, 1266, 1455, 1620, 1959, 2922, 3057, 3437 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.82 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 7.2 Hz, 1H), 8.02–7.96 (m, 2H), 7.78 (d, *J* = 7.2Hz, 1H), 7.73–7.67 (m, 2H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.37–7.23 (m, 9H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.87 (s, 1H), 6.63 (s, 3H), 6.24 (d, *J* = 7.2 Hz, 2H), 5.33 (d, *J* = 9.2 Hz, 1H), 5.17 (d, *J* = 9.2 Hz, 1H), 2.51 (s, 3H), 2.15 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.4, 140.1, 138.0, 135.7, 135.3, 134.7, 134.5, 133.4, 133.0, 131.7, 131.5, 131.1, 130.3, 130.1, 130.08, 130.0, 129.7, 129.6, 129.5, 129.4, 128.6, 128.3, 128.2, 128.15, 128.08, 128.0, 127.7, 127.5, 127.3, 126.5, 74.9, 72.4, 20.8, 18.6, 17.8. HRMS (ESI): [M]⁺ calcd for [C₄₀H₃₅N₂]: 543.2795, found: 543.2791.

(4S,5S)-1-(3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)-3-mesityl-4,5-diphenyl-4,5-dihy dro-1H-imidazol-3-ium (5j)

^{CF₃} IR(KBr): 701, 1066, 1138, 1281, 1381, 1618, 1959, 2928, 3066, 3437 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.89$ (s, 1H), 8.10 (s, 1H), 7.99 (d, J = 7.2 Hz, 3H), 7.37–7.33 (m, 4H), 7.32–7.25 (m, 2H), 7.21–7.13 (m, 4H), 7.09–7.06 (m, 2H), 6.93 (s, 1H), 6.73–6.71 (m, 3H), 5.51 (d, J = 10.4 Hz, 1H), 5.08 (d, J = 10 Hz, 1H), 2.52 (s, 3H), 2.22 (s, 3H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.4$, 141.2, 140.1, 135.7, 134.6, 133.9, 133.4, 133.2, 132.9, 132.5, 132.2, 131.8, 131.7, 131.1, 130.8, 130.6, 130.3, 129.97, 129.95, 129.8, 129.6, 129.5, 129.2, 128.5, 128.2, 127.7, 127.0, 124.3, 122.3, 121.6, 75.6, 73.2, 20.9, 18.7, 17.7. HRMS (ESI): [M]⁺ calcd for [C₃₈H₃₁F₆N₂]: 629.2386, found: 629.2383.

(4R,5R)-1-(3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-yl)-3-mesityl-4,5-diphenyl-4,5-dih ydro-1H-imidazol-3-ium (5k)

CF₃ IR(KBr): 701, 1066, 1138, 1281, 1381, 1618, 1959, 2928, 3066, 3437 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.89$ (s, 1H), 8.11 (s, 1H), 7.99–7.97 (m, 3H), 7.36–7.24 (m, 5H), 7.21–7.13 (m, 4H), 7.12–7.06 (m, 2H), 6.93 (s, 1H), 6.74–6.71 (m, 3H), 5.50 (d, J = 10.4Hz, 1H), 5.07 (d, J = 10.4 Hz, 1H), 2.52 (s, 3H), 2.22 (s, 3H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.4$, 141.2, 140.1, 135.7, 134.6, 133.9, 133.4, 133.2, 132.8, 132.5, 132.2, 131.8, 131.7, 131.0, 130.8, 130.6, 130.3, 129.9, 129.8, 129.6, 129.5, 129.1, 128.5, 128.2, 127.7, 127.0, 124.3, 122.3, 121.6, 118.9, 75.6, 73.2, 20.9, 18.7, 17.7. HRMS (ESI): [M]⁺ calcd for [C₃₈H₃₁F₆N₂]: 629.2386, found: 629.2383.

Representative procedure for synthesis of imidazolinium salt 5g:

A flame-dried, round-bottom flask equipped with a reflux condenser was charged with $Pd(OAc)_2$ (106 mg, 0.472 mmol), *rac*-binap (587 mg, 0.944 mmol), NaOt-Bu (906 mg, 9.44 mmol), mesityl bromide (986 mg, 4.96 mmol), and (*S*,*S*)-1,2-diphenyl ethylenediamine (500 mg, 2.36 mmol) under a dry N₂ atmosphere. Toluene (60 mL) was added to the mixture. After 12 hours at 100 °C, the solution was allowed to cool to room temperature, passed through a plug of Celite, concentrated, and purified by silica gel chromatography (eluent, petroleum ether/Et₂O 1/20) to afford product diamine.

A flame-dried, round-bottom flask equipped with a short path distillation set was charged withdiamine (2.2 mmol), $HC(OEt)_3$ (14 mL), and NH_4BF_4 (334 mg, 3.10 mmol). After 3 hours at 115 °C, the solution was allowed to cool to room temperature, concentrated, and purified by silicagel column chromatography (eluent, petroleum ether/EtOAc 1/3)to afford the corresponding imidazolinium salt **2**, which was triturated (hexane/CH₂Cl₂) to a white solid.

(4S,5S)-1,3-dimesityl-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium (5g) IR (KBr): 700, 759, 854, 1060, 1224, 1267, 1456, 1959, 1620, 2823, 3040, 3438 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.53 (s, 1H), 7.37 (d, *J* = 7.6 Hz, 10H), 6.96 (s, 2H), 6.70 (s, 2H), 6.01 (s, 2H), 2.66 (s, 3H), 2.19 (s, 3H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.9, 140.2, 136.0, 134.3, 131.1, 130.6, 130.1, 130.0, 129.4, 128.8, 128.5, 72.8, 20.8, 18.8, 18.1. HRMS (ESI): [M]⁺ calcd for [C₃₃H₃₅N₂]: 459.2800, found: 459.2792.

4. General Procedure and Spectral Data of Products

4.1 General Procedure for the synthesis of Fully FunctionalizedDihydropyranones

To a flame dried vessel were successively added NHC (0.01 mmol, 7.16 mg), 4 Å Molecular sieves (40.0 mg), DBU (0.01 mmol, 1.52 mg in 0.25 mL THF), oxidant (0.1 mmol, 40.8 mg), and **2a** (0.3 mmol, 30.3 mg) under N₂ atmosphere. After 10 min, **1a** (0.1 mmol, 20.4 mg in 0.25 mL THF) was added to the mixture. The reaction was stirred at 25°C for a specified reaction time (monitored by TLC). When the reaction was completed, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography (petroleumether/EtOAc) to give the corresponding dihydropyranones**3a**.

4.2 Analytical Data of Fully Substituted Dihydropyranones

(3S,4R)-ethyl 5-acetyl-6-methyl-2-oxo-3-phenyl-3,4-dihydro-2H-pyran-4-carboxylate (3a)

Pale Yellow Liquid. $[\alpha]_D^{20} = 41$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 702, 1027, 1157, 1261, 1363, 1456, 1601, 1730, 1791, 2371, 2856, 2925, 3275 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.31$ (m, 3H), 7.21–7.19 (m, 2H), 4.38 (d, J = 2.4 Hz, 1H), 4.22–4.16 (q, J = 7.2 Hz, 2H), 4.12 (d, J = 1.6 Hz, 1H), 2.33 (t, 6H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.6$, 170.5, 165.3, 160.2, 133.9, 129.2, 128.3, 126.8, 112.6, 62.1, 45.6, 45.5, 30.2, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 23.24 min, minor enantiomer t_R = 27.88 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₈O₅]: 303.1227, found: 303.1229.

(3S,4R)-ethyl

5-acetyl-3-(2-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3b)

Pale Yellow Liquid. $[\alpha]_D^{20} = -10$ (*c* 1.0, CH₂Cl₂, 91% ee); IR(KBr): 763, 1038, 1114, 1159, 1367, 1457, 1590, 1728, 2375, 2923, 3390 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.31$ (m, 1H), 7.14–7.10 (m, 2H), 7.03–7.00 (m, 1H), 4.55 (d, J = 4.4 Hz, 1H), 4.18–4.13 (q, J = 7.2 Hz, 2H), 4.04 (d, J = 3.6 Hz, 1H), 2.37 (s, 3H), 2.28 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.8$, 170.5, 164.7, 161.5, 159.8, 159.0, 130.4, 130.3, 128.4, 128.38, 124.8, 124.7, 121.6, 116.3, 116.0, 113.1, 62.1, 45.44, 45.42, 41.21, 41.19, 30.2, 19.2, 13.8. The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; minor enantiomer t_R = 7.32 min, major enantiomer t_R = 8.79 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₇FO₅]: 321.1133, found: 321.1137.

(3S,4R)-ethyl 5-acetyl-3-(3-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3c)

^{\downarrow} Pale Yellow Liquid. $[\alpha]_D^{20} = 48$ (*c* 1.0, CH₂Cl₂,90% ee); IR(KBr): 743, 796, 1023, 1105, 1261, 1377, 1459, 1591, 1731, 2922, 2958, 3409 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.35-7.30$ (m, 1H), 7.05–7.00 (m, 2H), 6.96–6.93 (dd, J = 2 Hz, J = 5.6 Hz, 1H), 4.37 (d, J = 2.8 Hz, 1H), 4.22–4.16(q, J = 7.2 Hz, 2H), 4.12–4.11 (dd, J = 0.8 Hz, J = 2.4 Hz, 1H), 2.36 (s, 3H), 2.33 (d, J = 0.8 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.5$, 170.3, 164.8, 164.2, 161.8, 160.0, 136.2, 136.1, 130.9, 130.8, 122.64, 122.61, 115.6, 115.4, 114.4, 114.2, 112.8, 62.2, 45.39, 45.38, 45.3, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 18.80 min, major enantiomer t_R = 22.91 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₇FO₅]: 321.1133, found: 321.1134.

(3S,4R)-ethyl

5-acetyl-3-(3-chlorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3d)

^c Yellow Liquid. $[\alpha]_D^{20} = 94$ (*c* 1.0, CH₂Cl₂, 93% ee); IR(KBr): 796, 1025, 1117, 1260, 1381, 1599, 1731, 1786, 2368, 2963, 3370 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32-7.29$ (m, 2H), 7.22 (s, 1H), 7.09–7.07 (m, 1H), 4.35 (d, J = 2.8 Hz, 1H), 4.21–4.16 (q, J = 7.2 Hz, 2H), 4.11 (d, J = 2 Hz, 1H), 2.37 (s, 3H), 2.34 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.5$, 170.3, 164.8, 160.0, 135.7, 135.1, 130.4, 128.7, 127.4, 125.0, 112.8, 62.2, 45.3, 45.2, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 95:5), 1 mL/min; minor enantiomer t_R = 28.51 min, major enantiomer t_R = 33.50 min. HRMS (ESI): [M+Na]⁺ calcd for [C₁₇H₁₇ClO₅]: 359.0657, found: 359.0664.

(3S,4R)-ethyl 5-acetyl-3-(3-bromophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3e)

^Br Yellow Liquid. $[\alpha]_D^{20} = 85$ (*c* 1.0, CH₂Cl₂, 90% ee); IR(KBr): 691, 790, 1028, 1073, 1120, 1254, 1426, 1595, 1730, 1787, 2924, 3380 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.47$ (d, J = 8 Hz, 1H), 7.38 (s, 1H), 7.22 (t, J = 8 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 4.34 (d, J = 2.8 Hz, 1H), 4.21–4.16 (q, J = 7.2 Hz, 2H), 4.10 (d, J = 2 Hz, 1H), 2.36 (s, 3H), 2.33 (d, J = 0.8 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.5$, 170.3, 164.7, 160.0, 136.0, 131.6, 130.7, 130.3, 125.4, 123.2, 112.9, 62.3, 45.33, 45.30, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 20.54 min, major enantiomer t_R = 25.35 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₇BrO₅]: 381.0332, found: 381.0337.

(3S,4R)-ethyl 5-acetyl-6-methyl-2-oxo-3-(m-tolyl)-3,4-dihydro-2H-pyran-4-carboxylate (3f)

^{cH₃}Yellow Liquid. $[\alpha]_{D}^{20} = 56 (c \ 1.0, CH_2Cl_2, 94\% ee); IR(KBr): 737, 1024, 1155, 1262, 1362, 1462, 1608, 1732, 1788, 2926, 3196cm⁻¹; ¹H NMR (400 MHz, CDCl₃): <math>\delta = 7.22$ (t, *J* = 7.6 Hz, 1H), 7.13(d, *J* = 7.2 Hz, 1H), 7.02 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 4.33 (d, *J* = 2 Hz, 1H), 4.22–4.17 (q, *J* = 7.2 Hz, 2H), 4.10 (s, 1H), 2.33 (d, 9H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.6$, 170.6, 165.4, 160.2, 139.0, 133.8, 129.1, 129.0, 127.7, 123.6, 112.6, 62.1, 45.59, 45.58, 30.2, 21.4, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 13.69 min, minor enantiomer t_R = 18.97 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₈H₂₀O₅]: 317.1384, found: 317.1389.

(3S,4R)-ethyl

5-acetyl-3-(3-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3g)

 $\int_{\text{OCH}_3} \text{Yellow Liquid. } [\alpha]_D^{20} = 38 \ (c \ 1.0, \ \text{CH}_2\text{Cl}_2, \ 94\% \ \text{ee}); \ \text{IR}(\text{KBr}): \ 737, \ 1044,$ 1155, 1263, 1362, 1459, 1601, 1730, 2926, 3195 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ (t, J = 8 Hz, 1H), 6.86–6.83 (dd, J = 2.4 Hz, J = 4.4 Hz, 1H), 6.78–6.75 (m, 2H), 4.35 (d, J = 2 Hz, 1H), 4.23–4.17 (q, J = 7.2 Hz, 2H), 4.12 (d, J = 1.2 Hz, 1H), 3.78 (s, 3H), 2.35 (d, 6H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.7$, 170.5, 165.3, 160.2, 160.1, 135.3, 130.2, 129.0, 118.9, 113.6, 112.9, 112.7, 62.2, 55.3, 45.5, 45.4, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 17.54 min, minor enantiomer t_R = 21.70 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₈H₂₀O₆]: 333.1333, found: 333.1331.

(3S,4R)-ethyl

5-acetyl-3-(4-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3h)

Yellow Liquid. $[\alpha]_D^{20} = 20$ (*c* 1.0, CH₂Cl₂, 90% ee); IR(KBr): 778, 1043, 1117, 1158, 1261, 1456, 1594, 1731, 2372, 2924, 3366 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.21–7.17 (dd, *J* = 5.2 Hz, *J* = 8.4 Hz, 2H), 7.04(t, 2H), 4.34 (d, *J* = 2.8 Hz, 1H), 4.21–4.16(q, *J* = 7.2 Hz, 2H), 4.10 (d, *J* = 2 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 196.6, 170.4, 165.2, 163.7, 161.3, 159.9, 129.59, 129.56, 128.8, 128.7, 116.3, 116.1, 112.9, 62.2, 45.4, 45.0, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 14.31 min, minor enantiomer t_R = 16.48 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₇FO₅]: 321.1133, found: 321.1138.

(3S,4R)-ethyl

5-acetyl-3-(4-chlorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3i)

Yellow Liquid. $[\alpha]_D^{20} = 51$ (*c* 1.0, CH₂Cl₂, 90% ee); IR(KBr): 741, 798, 1022, 1094, 1261, 1460, 1599, 1732, 2372, 2962, 3374 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34-7.32$ (dd, J = 2 Hz, J = 6.8 Hz, 2H), 7.04(d, J = 8.4 Hz, 2H), 4.34 (d, J = 2.8 Hz, 1H), 4.21–4.16 (q, J = 7.2 Hz, 2H), 4.11–4.10 (dd, J = 0.8 Hz, J = 2.8 Hz, 1H), 2.36 (s, 3H), 2.32 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.5$, 170.3, 165.0, 159.9, 134.5, 132.3, 129.4, 128.3, 112.9, 62.2, 45.2, 45.1, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 14.19 min, minor enantiomer t_R = 17.84 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₇ClO₅]: 337.0837, found: 337.0842.

(3S,4R)-ethyl 5-acetyl-3-(4-bromophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3j)

Yellow Liquid. $[\alpha]_D^{20} = 63$ (*c* 1.0, CH₂Cl₂, 93% ee); IR(KBr): 739, 814, 1021, 1152, 1261, 1363, 1458, 1732, 1790, 2924, 3308 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (d, *J* = 8.8 Hz, 2H), 7.10(d, *J* = 8 Hz, 2H), 4.32 (d, *J* = 2.8 Hz, 1H), 4.21–4.16 (q, *J* = 7.2 Hz, 2H), 4.11 (d, *J* = 2 Hz, 1H), 2.36 (s, 3H), 2.32 (d, *J* = 0.4 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.5$, 170.3, 164.9, 159.9, 132.8, 132.4, 128.6, 122.5, 112.9, 62.2, 45.2, 45.1, 30.3, 19.4, 13.9.The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane:*i*-PrOH = 95:5), 1 mL/min; major enantiomer t_R = 26.67 min, minor enantiomer t_R = 33.20 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₇H₁₇BrO₅]: 381.0332, found: 381.0337.

(3S,4R)-ethyl 5-acetyl-6-methyl-2-oxo-3-(p-tolyl)-3,4-dihydro-2H-pyran-4-carboxylate (3k)

Yellow Liquid. $[\alpha]_D^{20} = 111$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr): 737, 809, 1025, 1117, 1259, 1378, 1459, 1611, 1733, 1787, 2925, 3444 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.15$ (d, J = 8 Hz, 2H), 7.09 (d, J = 8 Hz, 2H), 4.33 (d, J = 2.4 Hz, 1H), 4.22–4.16 (q, J = 7.2 Hz, 2H), 4.09 (d, J = 1.6 Hz, 1H), 2.33 (d, 9H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.7$, 170.6, 165.5, 160.2, 138.2, 130.8, 129.9, 126.7, 112.6, 62.1, 45.6, 45.3, 30.2, 21.0, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 12.74 min, minor enantiomer t_R = 14.11 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₈H₂₀O₅]: 317.1384, found: 317.1381.

(3S,4R)-ethyl

5-acetyl-3-(4-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3l)

Yellow Liquid. $[\alpha]_D^{20} = 133$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr): 738, 1036, 1117, 1222, 1362, 1459, 1604, 1714, 2924, 3405 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.13$ (d, *J* = 8.8 Hz, 2H), 6.87–6.85 (dd, *J* = 2 Hz, *J* = 6.4 Hz, 2H), 4.31 (d, *J* = 2.4 Hz, 1H),

4.21–4.16 (q, J = 7.2 Hz, 2H), 4.07 (d, J = 1.6 Hz, 1H), 3.79 (s, 3H), 2.34–2.32 (m, 6H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.8$, 170.6, 165.6, 160.1, 159.5, 128.0, 125.7, 114.6, 112.7, 62.1, 55.3, 45.6, 44.9, 30.2, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 24.64 min, minor enantiomer t_R = 31.60 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₈H₂₀O₆]: 333.1333, found: 333.1329.

(3S,4R)-ethyl

5-acetyl-3-(4-ethoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3m)

Yellow Liquid. $[\alpha]_D^{20} = 91$ (*c* 1.0, CH₂Cl₂, 98% ee); IR(KBr): 825, 1044, 1149, 1252, 1365, 1513, 1612, 1732, 1788, 2926, 2960 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.11 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.30 (d, *J* = 2.4 Hz, 1H), 4.21–4.16 (q, *J* = 7.2 Hz, 2H), 4.07 (d, *J* = 1.6 Hz, 1H), 4.03–3.98 (q, *J* = 7.2 Hz, 2H), 2.34 (d, 6H), 1.40 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 196.8, 170.7, 165.6, 160.2, 158.8, 128.0, 125.5, 115.1, 112.7, 63.5, 62.1, 45.6, 44.9, 30.2, 19.4, 14.7, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 16.66 min, minor enantiomer t_R = 21.09 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₉H₂₂O₆]: 347.1489, found: 347.1493.

(3S,4R)-ethyl

5-acetyl-6-methyl-2-oxo-3-(4-pentylphenyl)-3,4-dihydro-2H-pyran-4-carboxylate (3n)

Yellow Liquid. $[\alpha]_D^{20} = 44$ (*c* 1.0, CH₂Cl₂, 97% ee); IR(KBr): 739, 1039, 1119, 1155, 1261, 1422, 1595, 1731, 2373, 2925, 3346 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.16$ (d, *J* = 8 Hz, 2H), 7.10 (d, *J* = 8 Hz, 2H), 4.33 (d, *J* = 2 Hz, 1H), 4.22–4.16 (q, *J* = 7.2 Hz, 2H), 4.08 (d, *J* = 1.6 Hz, 1H), 2.57 (t, *J* = 8 Hz, 2H), 2.32 (m, 6H), 1.62–1.55 (m, 2H), 1.37–1.27 (m, 4H), 1.24 (t, *J* = 7.2 Hz, 3H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.7$, 170.6, 165.5, 160.2, 143.2, 131.0, 129.2, 126.7, 112.6, 62.1, 45.6, 45.3, 35.4, 31.4, 30.9, 30.2, 22.4, 19.4, 13.93, 13.91. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 92:8), 1 mL/min; minor enantiomer t_R = 9.61 min, major enantiomer t_R = 12.01 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₂H₂₈O₅]: 373.2010, found: 373.2007.

(38,4R)-ethyl 5-acetyl-3-(4-cyclohexylphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (30)

Yellow Liquid. $[\alpha]_D^{20} = 190$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 737, 1057, 1148, 1251, 1362, 1448, 1644, 1733, 1788, 2926, 3373 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18$ (d, *J* = 8.4 Hz, 2H), 7.12(d, *J* = 8.4 Hz, 2H), 4.33 (d, *J* = 2.4 Hz, 1H), 4.21–4.16 (q, *J* = 7.2 Hz, 2H), 4.09 (d, *J* = 1.6 Hz, 1H), 2.50 (d, *J* = 10.4 Hz, 1H), 2.34 (d, 6H), 1.84 (d, *J* = 8 Hz, 4H), 1.54 (d, *J* = 8.8 Hz, 1H), 1.42–1.32 (m, 4H), 1.21–1.21 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.7$, 170.6, 165.5, 160.2, 148.2, 131.1, 127.6, 126.7, 112.5, 62.0, 45.5, 45.3, 44.0, 34.2, 30.2, 26.7, 26.0, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 95:5), 1 mL/min; minor enantiomer t_R = 16.08 min, major enantiomer t_R = 21.30 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₃H₂₈O₅]: 385.2010, found: 385.2011.

(3S,4R)-ethyl 5-acetyl-3-(3,4-dimethylphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3p)

Yellow Liquid. $[\alpha]_D^{20} = 152$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 737, 1040, 1148, 1381, 1454, 1609, 1732, 1789, 2375, 2924, 3348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.09 (d, *J* = 8 Hz, 1H), 6.96 (s, 1H), 6.88 (d, *J* = 1.6 Hz, 1H), 4.30 (d, *J* = 2 Hz, 1H), 4.22–4.17 (q, *J* = 7.2 Hz, 2H), 4.08 (d, *J* = 1.2 Hz, 1H), 2.33 (d, 6H), 2.23 (s, 6H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 196.7, 170.7, 165.6, 160.3, 137.5, 136.8, 131.1, 130.3, 128.1, 123.8, 112.5, 62.1, 45.6, 45.2, 30.2, 19.8, 19.4, 19.3, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 12.81 min, minor enantiomer t_R = 15.79 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₉H₂₂O₅]: 331.1540, found: 331.1538.

(38,4R)-ethyl 5-acetyl-3-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3q)

Yellow Liquid. $[\alpha]_D^{20} = 114$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 774, 1043, 1117, 1190, 1421, 1596, 1786, 2375, 2924, 3344 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.28$ (d, *J* = 8.4 Hz, 1H), 6.74 (t, 2H), 4.32 (d, *J* = 2 Hz, 1H), 4.22–4.17 (q, *J* = 7.2 Hz, 2H), 4.13 (s, $\delta = 0.28$

1H), 3.86 (d, 6H), 2.37 (s, 3H), 2.31 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.8$, 170.6, 165.6, 159.9, 149.4, 149.0, 125.9, 118.9, 113.0, 111.5, 110.3, 62.1, 55.9, 55.88, 45.1, 45.0, 30.3, 19.4, 14.0. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 29.38 min, minor enantiomer t_R = 35.93 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₉H₂₂O₇]: 363.1438, found: 363.1442.

(3S,4R)-ethyl 5-acetyl-6-methyl-3-(naphthalen-2-yl)-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3r)

Yellow Liquid. $[\alpha]_D^{20} = 92$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 738, 1038, 1149, 1261, 1362, 1605, 1731, 1787, 2371, 2927, 3298 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.82-7.76$ (m, 3H), 7.61 (s, 1H), 7.25–7.48 (m, 2H), 7.36–7.34 (dd, J = 1.6 Hz, J = 6Hz, 1H), 4.54 (d, J = 2.4 Hz, 1H), 4.27 (d, J = 1.6 Hz, 1H), 4.23–4.18 (q, J = 7.2 Hz, 2H), 2.33 (s, 6H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.6$, 170.6, 165.4, 160.2, 133.2, 132.8, 131.1, 129.2, 127.9, 127.6, 126.7, 126.6, 125.9, 124.4, 112.8, 62.1, 45.8, 45.4, 30.3, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 40.64 min, minor enantiomer t_R = 63.10 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₁H₂₀O₅]: 353.1384, found: 353.1386.

(3S,4R)-benzyl 5-acetyl-3-(4-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3s)

Yellow Liquid. $[\alpha]_D^{20} = 115$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 787, 1042, 1117, 1260, 1422, 1596, 1786, 2370, 2924, 3363 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.39-7.32$ (m, 3H), 7.31–7.25 (m, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.85–6.83 (m, 2H), 5.15 (s, 2H), 4.31 (d, J = 2.8 Hz, 1H), 4.14–4.13 (m, 1H), 3.77 (s, 3H), 2.29 (d, J = 0.8 Hz, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.6$, 170.5, 165.5, 160.1, 159.5, 134.9, 128.6, 128.5, 128.2, 128.0, 125.6, 114.6, 112.7, 67.7, 55.2, 45.5, 44.9, 30.2, 19.4. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; minor enantiomer t_R = 27.13 min, major enantiomer t_R = 29.99 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₃H₂₂O₆]: 395.1489, found: 395.1494.

(3S,4R)-4-ethyl5-methyl

3-(4-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4,5-dicarboxylate (3t)

Yellow Liquid. $[\alpha]_D^{20} = 108$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr): 795, 1032, 1149, 1259, 1379, 1462, 1514, 1655, 1726, 1788, 2956, 3434 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.15$ (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.26 (d, J = 2.8 Hz, 1H), 4.19–4.14 (m, 2H), 4.10–4.09 (m, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 2.38 (d, J = 0.8 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.8$, 165.9, 165.7, 162.0, 159.4, 128.2, 125.7, 114.5, 104.1, 61.8, 55.2, 52.0, 45.2, 45.1, 18.8, 13.9. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 14.51 min, minor enantiomer t_R = 19.87 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₈H₂₀O₇]: 349.1282, found: 349.1286.

(3S,4R)-diethyl 3-(4-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4,5-dicarboxylate (3u)

Yellow Liquid. $[\alpha]_D^{20} = 115$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr): 799, 1072, 1260, 1376, 1461, 1611, 1655, 1721, 1787, 2923, 3371 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.16$ (d, J = 7.6 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.29–4.10 (m, 6H), 3.79 (s, 3H), 2.38 (d, J = 0.8 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.9$, 165.9, 165.4, 161.7, 159.4, 128.2, 125.7, 114.4, 104.4, 61.8, 61.1, 55.2, 45.3, 45.0, 18.7, 14.1, 13.9. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 13.34 min, minor enantiomer t_R = 19.39 min. HRMS (ESI): [M+H]⁺ calcd for [C₁₉H₂₂O₇]: 363.1438, found: 363.1444.

(3S,4R)-4-(4-chlorobenzyl) 5-ethyl 3-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-4,5-dicarboxylate (3v)

Classical Yellow Liquid. $[\alpha]_D^{20} = 69$ (c 1.0, CH₂Cl₂, 83% ee); IR(KBr): 801, 1076, 1261, 1460, 1597, 1688, 1735, 1786, 2369, 2925, 3371 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33-7.29$ (m, 2H), 7.20 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.75–6.69 (m, 2H), 5.09 (s, 2H), 4.26 (d, J = 3.6 Hz, 1H), 4.12–4.20 (m, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.72 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.5$, 165.7, 165.5, 161.9, 149.1, 148.9, 134.2, 133.5, 129.3, 128.6, 125.5, 119.0, 111.2, 110.2, 104.1, 66.4, 55.72, 55.7, 52.0, 45.2, 44.7, 18.7. The enantiomeric excess was determined by HPLC with an OD-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 34.98 min, minor enantiomer t_R = 54.46 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₄H₂₃Cl₁O₈]: 497.0974, found: 497.0982.

(3S,4S)-5-acetyl-6-methyl-3,4-diphenyl-3,4-dihydro-2H-pyran-2-one (3w)

Pale Yellow Liquid. $[\alpha]_D^{20} = 23$ (*c* 1.0, CH₂Cl₂, 71% ee); IR(KBr): 740, 1042, 1140, 1268, 1356, 1621, 1740, 1785, 2375, 2933, 3331 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.28$ (m, 6H), 7.24 (d, *J* = 7.2 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 2H), 4.35 (s, 1H), 4.10 (d, *J* = 2.4 Hz, 1H), 2.42 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.8$, 166.2, 159.3, 139.6, 135.5, 129.5, 129.2, 128.2, 128.0, 127.0, 126.9, 115.9, 52.9, 46.4, 30.0, 18.9. The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 13.90 min, major enantiomer t_R = 19.88 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₀H₁₈O₃]: 329.1172, found: 329.1159.

(3R,4R)-4-chlorobenzyl 5-acetyl-3,6-dimethyl-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (3x)

Pale Yellow Liquid. $[α]_D^{20} = 42$ (*c* 1.0, CH₂Cl₂, 88% ee); IR(KBr): 738, 1038, 1134, 1270, 1364, 1618, 1752, 1780, 2369, 2938, 3340 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.32 (m, 2H), 7.25 (d, *J* = 8.8 Hz, 2H), 5.10 (s, 2H), 3.64 (d, *J* = 2.4 Hz, 1H), 3.15–3.09 (qd, *J* = 3.2 Hz, *J* = 4 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 3H), 1.29 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 196.8, 170.7, 167.7, 160.1, 134.4, 133.4, 129.6, 128.8, 111.9, 66.6, 45.8, 35.3, 30.3, 19.4, 15.3. The enantiomeric excess was determined by HPLC with an AS-H column. (*n*-hexane:*i*-PrOH = 85:15), 1 mL/min; minor enantiomer t_R = 29.03 min, major enantiomer t_R = 34.01 min. HRMS (ESI): [M+Na]⁺ calcd for [C₁₇H₁₇ClO₅]: 359.0657, found: 359.0672.

(1R,4S,5R,6R)-ethyl

6-acetyl-1-methyl-3-oxo-4-phenyl-2,7-dioxabicyclo[4.1.0]heptane-5-carboxylate (6a)

Pale Yellow Liquid. $[\alpha]_D^{20} = 39$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr): 749, 1028, 1155, 1262, 1383, 1598, 1730, 2373, 2924, 3364 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.29$ (m, 3H), 7.21 (d, *J* = 6.8 Hz, 2H), 4.37 (d, *J* = 2.4 Hz, 1H), 4.22–4.17 (q, *J* = 7.2 Hz, 2H), 4.11 (d, *J* = 1.2 Hz, 1H), 2.33 (d, 6H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.7$, 170.6, 165.4, 160.2, 133.9, 129.2, 129.15, 128.4, 126.9, 112.7, 62.2, 45.7, 45.6, 30.2, 19.4, 13.9. The enantiomeric excess was determined by HPLC with an OJ-H column. (*n*-hexane:*i*-PrOH = 80:20), 1 mL/min; major enantiomer t_R = 15.36 min, minor enantiomer t_R = 17.89 min. HRMS (ESI): [M+Na]⁺ calcd for [C₁₇H₁₈O₆]: 341.0996, found: 341.0995.

5. X-ray Crystallographic Data

X-ray Crystallographic Data of Compound 4d

	$ \begin{array}{c} 05 \\ C17 \\ C18 \\ C19 \\ C14 \\$	C3 C4 C22 C4 C22 C5 C3 C23 C7 C23 C7 C7 C23 C7 C7 C23 C7 C7 C7 C23 C7 C7 C7 C23 C7 C7 C23 C7 C	OMe MeO Cl O MeO O MeO O Sv CCDC 1037041	
Bond precision:	C-C = 0.0060	А	Wavelength=0.71073	
Cell:	a=9.2814(16)	b=11.7110(17)	c=12.1339(13)	
	alpha=113.081(12)	beta=96.350(11)	gamma=102.204(14)	
Temperature:	292 K			
	Calculated		Reported	
Volume	1158.1(3)		1158.1(3)	
Space group	P -1		P -1	
Hall group	-P 1		-P 1	
Moiety formula	C24 H23 Cl O8		C24 H23 Cl O8	
Sum formula	C24 H23 Cl O8		C24 H23 Cl O8	
Mr	474.87		474.87	
Dx,g cm-3	1.362		1.362	
Ζ	2		2	
Mu (mm-1)	0.212		0.212	
F000	496.0		496.0	
F000'	496.58			
h,k,lmax	11,14,14		11,14,14	
Nref	4569		4553	
Tmin,Tmax	0.948,0.954		0.975,1.000	
Tmin'	0.948			
Correction method= MULTI-SCAN				
Data completene	ss= 0.996	Theta(max)= 26.020		
R(reflections)=0	0.0652(2049)	wR2(reflections)= 0.1818(4553)		
S = 1.030	Npar= 302			

6. NMR and HPLC spectrogram

ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

S76

S77

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	23.264	1.67971e4	304.28860	49.6592
2	DAD 254, 16 nm	27.189	1.77228e4	269.36551	50.3408

Dool	Processed	Retention	Peak Area	Peak Height	Peak Area
геак	Channel	el Time (min) (mAU 16 nm 23.236 2.8599	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	23.236	2.85998e4	512.54529	97.9166
2	DAD 254, 16 nm	27.883	608.53680	9.97842	2.0834

3a

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	7.127	3217.05884	121.02797	50.5970
2	DAD 254, 16 nm	8.546	3141.13696	95.70715	49.4030

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	7.328	905.84814	34.85149	4.5650
2	DAD 254, 16 nm	8.787	1.89375e4	590.19281	95.4350

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	19.163	5708.45703	107.59546	49.5045
2	DAD 254, 16 nm	23.901	5822.72803	90.86617	50.4955

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	18.799	1369.08203	26.75384	5.1654
2	DAD 254, 16 nm	22.905	2.51358e4	369.87375	94.8346

3c

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area
1	DAD 254, 16 nm	28.057	1.39738e4	178.06345	50.6433
2	DAD 254, 16 nm	33.771	1.36187e4	139.83339	49.3567

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area
1	DAD 254, 16 nm	28.505	1565.34631	21.65634	3.6695
2	DAD 254, 16 nm	33.499	4.10933e4	378.78516	96.3305

Dool	Processed	Retention	Peak Area	Peak Height	Peak Area
ГСАК	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA254 nm	20.171	5129799	104702	50.13
2	PDA 254nm	25.237	5102963	95283	49.87

Deal	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(AU*s)	(AU)	(%)
1	PDA254 nm	20.536	453859	10968	5.00
2	PDA254 nm	25.345	8625663	164280	95.00

3e

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	13.520	2.60074e4	712.30029	50.1697
2	DAD 254, 16 nm	18.283	2.58315e4	535.31207	49.8303

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	13.685	3.87218e4	982.26636	97.1668
2	DAD 254, 16 nm	18.974	1129.05334	23.39927	2.8332

3f

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	18.309	4591.86377	109.14375	49.7706
2	DAD 254, 16 nm	22.150	4634.18506	92.21734	50.2294

Peak	Processed Channel	Retention Time (min)	Peak Area	Peak Height	Peak Area
1	DAD 254, 16 nm	17.537	2.37991e4	533.15991	96.9647
2	DAD 254, 16 nm	21.695	744.98730	15.36586	3.0353

3g

Dool	Processed	Retention	Peak Area	Peak Height	Peak Area
геак	Channel	Time (min)	(AU*s)	(AU)	(%)
1	PDA246.9 nm	13.667	1240049	39046	49.90
2	PDA246.9 nm	15.757	1245039	31146	50.10

Deak	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(AU*s)	(AU)	(%)
1	PDA246.9 nm	14.306	1109875	36656	94.95
2	PDA246.9 nm	16.483	58971	1670	5.05

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	14.690	5360.80029	119.75430	50.4051
2	DAD 254, 16 nm	18.776	5274.63818	99.87841	49.5949

Peak	Processed	Retention Time (min)	Peak Area	Peak Height	Peak Area
1				274.07115	(70)
I	DAD 254, 16 nm	14.189	1.69883e4	3/4.8/115	94.7678
2	DAD 254, 16 nm	17.837	937.93311	19.23451	5.2322

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area
1	DAD 254, 16 nm	26.848	4462.83496	45.53188	49.7318
2	DAD 254, 16 nm	33.087	4510.97314	40.85940	50.2682

Dealr	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	26.667	1.99684e4	202.37297	96.4331
2	DAD 254, 16 nm	33.198	738.58948	7.13121	3.5669

2803883

93367

50.12

14.229

Deak	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(AU*s)	(AU)	(%)
1	PDA246.9 nm	12.736	1690588	62738	97.49
2	PDA246.9 nm	14.108	43514	1731	2.51

3k

2

PDA246.9 nm

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	24.502	5495.23730	97.43780	50.1952
2	DAD 254, 16 nm	30.807	5452.49951	78.66367	49.8048

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	24.637	1.60160e4	271.59885	97.2659
2	DAD 254, 16 nm	31.597	450.20514	7.07779	2.7341

4707496

90775

49.81

21.025

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(AU*s)	(AU)	(%)
1	PDA246.9 nm	16.660	5088941	134227	98.77
2	PDA246.9 nm	21.086	63474	1641	1.23

3m

2

PDA246.9 nm

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	9.575	8085.87207	249.60936	50.1708
2	DAD 254, 16 nm	12.162	8030.80518	199.89389	49.8292

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	9.611	682.96936	22.1537	1.5015
2	DAD 254, 16 nm	12.009	4.48028e4	969.76141	98.4985

3n

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	16.324	1.60939e4	264.19598	50.5960
2	DAD 254, 16 nm	22.393	1.57148e4	182.63591	49.4040

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	16.075	935.47333	18.44045	1.9669
2	DAD 254, 16 nm	21.302	4.66265e4	482.55835	98.0331

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	12.916	1.75131e4	468.87976	49.0660
2	DAD 254, 16 nm	15.659	1.81799e4	393.25751	50.9340

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	12.814	2.44865e4	654.27258	97.8444
2	DAD 254, 16 nm	15.794	539.47058	12.76532	2.1556

3p

Реак	Channel	Time (min)	(AU*s)	(AU)	(%)
1	PDA246.9 nm	29.682	3540273	49972	50.03
2	PDA246.9 nm	35.219	3535808	38939	49.97

3q

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area
1	DAD 254, 16 nm	39.953	1.75848e4	161.70930	49.6348
2	DAD 254, 16 nm	61.745	1.78436e4	94.90437	50.3652

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	40.636	4.99372e4	430.04370	97.8326
2	DAD 254, 16 nm	63.097	1106.34253	7.03193	2.1674

3r

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	26.644	1.19727e4	132.14328	49.8551
2	DAD 254, 16 nm	30.743	1.20423e4	114.58701	50.1449

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	27.127	626.90314	8.19894	1.8409
2	DAD 254, 16 nm	29.987	3.34267e4	312.95358	98.1591

3s

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	14.862	1.10374e4	197.91924	50.1807
2	DAD 254, 16 nm	19.474	1.09579e4	144.61237	49.8193

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area
1	DAD 254, 16 nm	14.513	5.27739e4	920.35876	97.3579
2	DAD 254, 16 nm	19.867	1432.20190	20.98921	2.6421

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area
1	DAD 254, 16 nm	13.395	1.93720e4	377.46848	50.1193
2	DAD 254, 16 nm	18.256	1.92798e4	245.45526	49.8807

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	13.338	3.46210e4	604.72217	97.9056
2	DAD 254, 16 nm	19.389	740.59613	10.58835	2.0944

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	36.856	9330.18750	65.16678	49.7995
2	DAD 254, 16 nm	53.729	9405.30176	36.44764	50.2005

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	34.976	6.77280e4	414.29953	91.5319
2	DAD 254, 16 nm	54.463	6265.88574	27.00175	8.4681

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	14.476	2.88310e4	725.20691	49.9210
2	DAD 254, 16 nm	21.131	2.89223e4	506.57614	50.0790

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	13.899	7955.07373	206.62357	15.2991
2	DAD 254, 16 nm	19.880	4.40420e4	779.88367	84.7009

3w

Doolr	Processed	Retention	Peak Area	Peak Height	Peak Area
гсак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	29.364	8643.55469	79.28326	50.5026
2	DAD 254, 16 nm	35.546	8471.50195	82.48608	49.4974

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	29.033	3923.86377	41.47171	5.8839
2	DAD 254, 16 nm	34.014	6.27641e4	513.21808	94.1161

Peak	Processed Channel	Retention Time (min)	Peak Area (mAU*s)	Peak Height (mAU)	Peak Area (%)
1	DAD 254, 16 nm	15.974	4424.85010	115.26480	49.6742
2	DAD 254, 16 nm	18.424	4482.89453	102.39242	50.3258

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Chamler		(IIIAU 3)	(IIIAO)	(70)
1	DAD 254, 16 nm	15.355	1.59502e4	414.93729	97.3614
2	DAD 254, 16 nm	17.886	432.26294	11.25341	2.6386