Support information

Syndioselective Coordination Polymerization of the Unmasking Polar Methoxystyrenes Using Pyridenylmethylene Fluorenyl Yttrium Precursor

Dongtao Liu,^{a,#} Rong Wang,^{b,#} Meiyan Wang,^c Chunji Wu,^a Zichuan Wang,^a Changguang Yao,^a Bo Liu,^a Xinhua Wan,^{*b} Dongmei Cui^{*a}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

^b Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

^c Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130022, People's Republic of China.

[#] The first two authors contributed equally to this paper.

Corresponding to E-mail: dmcui@ciac.ac.cn and xhwan@pku.edu.cn

Experimental Section

General Considerations. All manipulations were performed under a dry and oxygen-free argon atmosphere using standard high vacuum Schlenk techniques or in a glove box. All solvents were purified via a solvent purification system. The *ortho*-methoxystyrene (oMOS), meta-methoxystyrene (mMOS), para-methoxystyrene (pMOS), and styrene (St) were were purchased from Aldrich and dried over CaH₂ under stirring for 48 hours and distilled before use. Aluminum alkyls were purchased from Aldrich and used without further purification. The pyridyl methylene fluorenyl yttrium complex 1^1 and phenyl methylene fluorenyl ligand² were prepared according to the reported methods. Organometallic samples for NMR spectroscopic measurements were prepared in the glove box by use of NMR tubes sealed by paraffin film. ¹H, ¹³C NMR spectra were recorded on a Bruker AV400 (FT, 400 MHz for ¹H; 100 MHz for ¹³C) or AV500 (FT, 500 MHz for ¹H; 125 MHz for ¹³C). NMR assignments were confirmed by ¹H-¹³C HMQC experiments when necessary. The molecular weight (M_n) and molecular weight distribution of the polymers were measured by means of gel permeation chromatography (GPC) on a PL-GPC 220 type high-temperature chromatography equipped with three PL-gel 10 µm Mixed-B LS type columns at 150 °C. Differential scanning calorimetry (DSC) analyses were carried out on a DSC 1 from METTLER-TOLEDO Instruments under a nitrogen atmosphere at a heating rate of 10 °C/min. The thermal history difference in the polymers was eliminated by first heating the specimen to 300 °C, cooling at 10 °C/min to 25 °C, and then recording the second DSC scan.

Synthesis of Complex (Ph–CH₂–Flu)Y(CH₂SiMe₃)₂(THF) (2). Under a nitrogen atmosphere, to a hexane solution (5 mL) of Y(CH₂SiMe₃)₃(THF)₂ (0.495 g, 1.0 mmol), 1 equiv of Ph–CH₂–FluH (0.256 g, 1.0 mmol) was added slowly at -30 °C. The mixture was stirred for 4 h to afford a dark red solution. Evaporation of the solvent left 2 as yellow solids (Scheme S1)(0.21 g, 35%). ¹H NMR (500 MHz, C₆D₆, 25 °C): δ –1.00 (br, 4H, Y–CH₂SiMe₃), 0.21 (s, 18H, CH₂SiMe₃), 1.22 (br, 4H, THF), 3.52 (br, 4H, THF), 4.69 (s, 2H,

Flu–C H_2 –Ph), 6.95–7.03 (m, 7H, Flu, Ph), 7.15 (2H, Flu), 7.63 (d, ${}^{3}J_{H-H} = 8.5$ Hz, 2H, Flu), 7.93 (d, ${}^{3}J_{H-H} = 8.0$ Hz, 2H, Flu). ${}^{13}C$ NMR (125 MHz, C₆D₆, 25 °C): δ 4.74 (s, 6C, CH₂Si Me_3), 25.45 (br, 2C, THF), 39.09 (d, 2C, J_{Y-C} = 43.7 Hz, Y-CH₂Si Me_3), 70.48 (br, 2C, THF), 97.37 (s, 1C, Flu–CH₂–Ph), 118.50, 118.80, 120.14, 122.65, 125.88, 126.45, 128.90, 129.02, 132.68, 142.55 (19C, Flu, Ph).

Scheme S1. Synthesis of complex 2

Typical Procedure for Polymerization of *p***MOS.** A detailed polymerization procedure is described as following (Table 1, run 2): Under a nitrogen atmosphere and room temperature, complex **1** (5.9 mg, 1.0×10^{-5} mol, 0.8 mL toluene) and 10 equiv. of AlⁱBu₃ (0.2 ml, 1.0×10^{-4} mol, 0.5 M in toluene) were added into a 10 mL flask. Then 1 equiv of [Ph₃C][B(C₆F₅)₄] (9.2 mg, 1.0×10^{-5} mol) was added under stirring to give a yellow solution after several minutes. Upon the addition of *p*MOS (0.20 g, 1.5 mmol), polymerization was initiated and carried out for 30 min. The reaction mixture was poured into a large quantity of methanol and then dried under vacuum at 50 °C to a constant weight (0.15 g, 75%).

Computational Details

The natural bond orbital (NBO) analysis³ was made using larger basis set 6-311G(d,p) for all the main group atoms.

Reference:

- 1. Pan, Y. P.; Rong, W. F.; Jian, Z. B.; Cui, D. M., Macromolecules 2012, 45, 1248.
- 2. Fleckenstein, C. A.; Plenio, H. Chem. Eur. J. 2007, 13, 2701.
- 3. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Vertion 3.1.

Legends

Figure S1. ¹H NMR spectrum of syndiotactic P(*p*MOS) (CDCl₃, 25°C)

Figure S2 ¹H-¹³C COSY spectrum of syndiotactic P(*p*MOS) (CDCl₃, 25°C)

Figure S3. ¹³C NMR spectrum of syndiotactic P(*p*MOS) (CDCl₃, 25°C)

Figure S4. ¹H NMR spectrum of syndiotactic P(*m*MOS) (CDCl₃, 25[°]C)

Figure S5 ¹H-¹³C COSY spectrum of syndiotactic P(*m*MOS) (CDCl₃, 25°C)

Figure S6. ¹³C NMR spectrum of syndiotactic P(*m*MOS) (CDCl₃, 25°C)

Figure S7. ¹³C NMR spectrum of syndiotactic P(*o*MOS) (C₂Cl₄D₂, 120°C)

Figure S8. The possible mechanisms for the syndioselective polymerizations of *o*MOS (a), *m*MOS (b) and *p*MOS (c) by complex $1/Al^{i}Bu_{3}/[Ph_{3}C][B(C_{6}F_{5})_{4}]$. **Figure S9.** NBO charge of the monomers. (a) St; (b) *o*MOS; (c) *m*MOS; (d) *p*MOS **Figure S10.** Probable insertion mechanism of methoxystyrenes. **Table S1.** Polymerization of methoxystyrenes by complex **2. Figure S11.** GPC curve of syndiotactic P(*p*MOS) (Table 1, entry 2). **Figure S12.** GPC curve of syndiotactic P(*m*MOS) (Table 1, entry 4). **Figure S13.** GPC curve of syndiotactic P(*o*MOS) (Table 1, entry 6). **Figure S14.** DSC curve of syndiotactic P(*m*MOS) (Table 1, entry 6) **Figure S15.** DSC curve of syndiotactic P(*m*MOS) (Table 1, entry 4) **Figure S16.** DSC curve of syndiotactic P(*p*MOS) (Table 1, entry 4)

Figure S1. ¹H NMR spectrum of syndiotactic P(*p*MOS) (CDCl₃, 25°C)

Figure S2 ¹H-¹³C COSY spectrum of syndiotactic P(*p*MOS) (CDCl₃, 25°C)

Figure S3. ¹³C NMR spectrum of syndiotactic P(*p*MOS) (CDCl₃, 25°C)

Figure S4. ¹H NMR spectrum of syndiotactic P(*m*MOS) (CDCl₃, 25°C)

Figure S5 ¹H-¹³C COSY spectrum of syndiotactic P(*m*MOS) (CDCl₃, 25°C)

Figure S6. ¹³C NMR spectrum of syndiotactic P(*m*MOS) (CDCl₃, 25°C)

Figure S7. ¹³C NMR spectrum of syndiotactic P(*o*MOS) (C₂Cl₄D₂, 120°C)

Figure S8. The possible mechanisms for the syndioselective polymerizations of *o*MOS (a), *m*MOS (b) and *p*MOS (c) by complex $1/Al^{i}Bu_{3}/[Ph_{3}C][B(C_{6}F_{5})_{4}]$.

(d)

(c)

	St	oMOS	mMOS	pMOS
<i>C</i> H (vinyl group)	-0.192	-0.195	-0.190	-0.188
<i>C</i> H ₂ (vinyl group)	-0.345	-0.349	-0.345	-0.360

	Figure S9.	NBO c	harge of the monomers.	(a)) St;	(b)) oMOS;	(c) mMOS;	(d)	pMOS
--	------------	-------	------------------------	-----	-------	-----	---------	----	---------	---	----	------

Figure S10. Probable insertion mechanism of methoxystyrenes.

entry	Monomer	[M]/[Y]	time	Yield	$M_{\rm n}{}^b$	$M_{\rm w}/M_{\rm n}^{\ b}$	T_g/T_m^c	
			(min)	(g)	(/10-4)		(°C)	
1	pMOS	300	120	trace	-	-	-	
2	mMOS	300	120	trace	-	-	-	
3	oMOS	300	120	0.38	5.99	1.26	85/234	

 Table S1. Polymerization of methoxystyrenes by complex 2.

^{*a*} General condition: 10^{-5} mol of Y complex; in toluene; [Al] = AlⁱBu₃; [Al]/[Y] = 10; [Ph₃C][B(C₆F₅)₄] / [Y] = 1; [monomer]₀ = 2.0 mol/L. ^{*b*} Determined by GPC in 1,2,4-trichlorobenzene at 150 °C against polystyrene standard. ^{*c*} Determined by DSC.

Figure S11. GPC curve of syndiotactic P(*p*MOS) (Table 1, entry 2).

Figure S12. GPC curve of syndiotactic P(*m*MOS) (Table 1, entry 4).

Figure S13. GPC curve of syndiotactic P(*o*MOS) (Table 1, entry 6).

Figure S14. DSC curve of syndiotactic P(*o*MOS) (Table 1, entry 6)

Figure S15. DSC curve of syndiotactic P(*m*MOS) (Table 1, entry 4)

Figure S16. DSC curve of syndiotactic P(*p*MOS) (Table 1, entry 2)