Electronic Supplementary Information

for

Light-Controlled Reversible Formation and Dissociation of Nanorods via Interconversion of Pseudorotaxanes

Jun Wang,^a Heng-Yi Zhang,^{*a} Xu-Jie Zhang,^a Zhi-Hui Song,^a Xiao-Jun Zhao^{*b} and Yu Liu^{*a}

^a Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China. Email: hyzhang@nankai.edu.cn, yuliu@nankai.edu.cn

^bTianjin Normal University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China. Email: hsxyzxj@mail.tjnu.edu.cn

Contents

Experimental section	S3
Fig. S1-S3. Characterization of DNDS	S6
Fig. S4. ¹ H ROESY of 2 ⊂ 1	S6
Fig. S5. Job's plot of 1 with 2	S7
Fig. S6. ESI-MS spectrum of 2⊂1.	S7
Fig. S7. absorption spectra and optical transmittance of 1	S8
Fig. S8. absorption spectra and optical transmittance of 2.	S8
Fig. S9. Detection of host 1-induced CAC of guest 2.	S9
Fig. S10. Optical transmittance of 2 with 1 and building block	S9
Fig. S11. Zeta Potential of nanorods	S10
Fig. S12. ¹ H ROESY of $2 \subset 1 \cdot \alpha$ -CD	S11
Fig. S13. ESI-MS spectrum of 2 ⊂ 1 ·α-CD	S11
Fig. S14. TEM image of $2 \subset 1 \cdot \alpha$ -CD	S12
Fig. S15. Absorption spectra of $3 \subset \alpha$ -CD	S12
Fig. S16. Circular dichroism change of $3 \subset \alpha$ -CD upon Vis/UV irradiation	S13
Fig. S17. Circular dichroism spectra of different mixture solution	S13
Fig. S18. Controlling TEM images	S14
Fig. S19. Absorption spectra of 3 with $2 \subset 1 \cdot \alpha$ -CD upon Vis/UV irradiation.	S14
Fig. S20. Circular dichroism change of 3 with $2 \subset 1 \cdot \alpha$ -CD upon Vis/UV is	rradiation.
	S15

Experimental Section

General Method. All chemicals were commercially available and were used without further purification unless noted otherwise. Compounds **1**, **2** and **3** were synthesized according to the previous reports.^{1,2,3} The synthesis of 4,8-dimethoxy-naphthalene-1,5-disulfonate sodium (DNDS) was described in the following, and it was identified by NMR spectroscopy in D₂O, performed on a Varian 400 spectrometer, mass spectrometry, performed on an IonSpec QFT-ESI MS, which were listed in Figures **S1–S3**, respectively. RPMI-1640 culture solution purchased Gibco company and the HGC-27 gastric cells were provided by Beijing tumor biology test center.

Preparation of stocks solution

A predetermined amount of 1, 2, 3 and α -CD were dissolved in aqueous phosphatebuffered saline (PBS) buffer to gain 1 mM stock solutions. Corresponding bulk of the above stock solutions were mixed for each measurement.

UV-Vis Spectra and Optical Transmittance

UV-Vis spectra and optical transmittance were recorded in a quartz cell (light path 10 mm) on a Shimadzu UV-3600 spectrophotometer equipped with a PTC-348WI temperature controller.

TEM and SEM Experiments

TEM images were recorded on a Philips Tecnai G2 20S-TWIN microscope operating at an accelerating voltage of 200 keV. The sample for TEM measurements was prepared by dropping the solution onto a copper grid. The grid was then air-dried. SEM images were recorded on a Hitachi S-3500N scanning electron microscope. The sample for SEM measurements was prepared by dropping the solution onto a coverslip, followed by evaporating the liquid in air.

Zeta Potential measurements

Zeta Potential experiment was carried out on a Zetasizer Nano ZS from Brookhaven Instruments equipped with a 10 mW HeNe laser at a wavelength of 633 nm.

Synthesis of 4,8-dimethoxy-naphthalene-1,5-disulfonate sodium (DNDS). We have synthesized host 1 building subunit according our previous article.^{S1} The process of synthesis was as follows: 2.33 g (20.00 mmol) chlorosulfonic acid was added dropwise over a period of 2 h to a stirred solution of 1,5-dimethoxynaphthalene (0.38 g, 2 mmol) in dry 150 mL CHCl₃ at -5 °C. After additional 4 h reaction at -5 °C, a white precipitate was obtained. The precipitate was carefully collected by filtration and washed with 50 mL dry CHCl₃ at once. The residue was taken up into 100 mL H₂O, and 5% NaOH solution was added until pH = 7. The solvate was envapoured and the residue was recrystallized from acetonitrile-acetone for three times and dried by vacuum, the target compound was obtained as white solid (731 mg, 91%).

Fig. S2. ¹³C NMR spectrum (100 MHz, D₂O, 25 °C) of DNDS.

Fig. S4. ¹H ROESY spectrum of [2] pseudorotaxane $2 \subset 1$ in D₂O at 25 °C.

Fig. S5. Job's plot of [2]pseudorotaxane 2⊂1 at total concentration of 0.01 mM at 25 °C.

Fig. S6. ESI-MS spectrum of [2]pseudorotaxane $2 \subset 1$. The peak at m/z 602.1632 is assigned to $[1 + 2]^{2-}$, calcd.: 602.1624.

Fig. S7. UV-Vis absorption spectra (a) and optical transmittance (b) of host **1** at different concentrations (from 0.01 mM to 0.15 mM) at 25 °C in water. Inset: dependence of (a) the absorbance at 321 nm and (b) optical transmittance at 450 nm on **1** concentration, respectively.

Fig. S8. UV-Vis absorption spectra (a) and optical transmittance (b) of guest **2** at different concentrations from 0.01 mM to 0.15 mM at 25 °C. Inset: dependence of the absorption at 261 nm (a) and optical transmittance at 450 nm on **2** concentration, respectively.

It should be noted that there was no obvious changes at longer wavelength region, and good linear relationship between absorbance or optical transmittance and the 1/2 concentration from 0.01 to 0.15 mM, indicating that free 1/2 was without any self-

aggregation behaviors under the concentration conditions.

Fig. S9. (a) Dependence of the optical transmittance at 25 °C on **2** concentration in the presence of 0.1 mM **1**; (b) The corresponding CAC was determined to be 0.1 mM.

Fig. S10. Optical transmittance of 1, 2, 1 + 2 and 2 + DNDS at 25 °C in water; [1] = 0.1 mM, [2] = 0.1 mM, [DNDS] = 0.20 mM, respectively.

Fig. S11. Zeta Potential of [2]pseudorotaxane $2 \subset 1$ nanorods, [1] = [2] = 0.1 mM.

Fig. S12. ¹H ROESY spectrum of [3] pseudorotaxane $2 \subset 1 \cdot \alpha$ -CD in D₂O at 25 °C.

Fig. S13. ESI-MS spectrum of [3]pseudorotaxane $2 \subset 1 \cdot \alpha$ -CD. The peak at m/z 602.27 is assigned to $[1 + 2]^{2-}$, calcd.: 602.16; the peak at m/z 1088.33 is assigned to $[1 + 2 + \alpha$ -CD]²⁻, calcd.: 1088.32.

Fig. S14. TEM image of [2]pseudorotaxane 2 \subset 1 aggregates in the presence of excess α -CD, [1] = [2] = 0.1 mM, [α -CD] = 0.5 mM.

Fig. S15. (a) Absorption spectra of $3 \subset \alpha$ -CD in water after UV irradiation at 365 nm, Inset: Absorbance changes at 333 nm versus irradiation time. (b) Cycling of the photo-mediated *trans* and *cis* isomerization of $3 \subset \alpha$ -CD ([3] = [α -CD] = 0.05 mM) by alternate irradiation with UV and visible light at 25 °C.

Fig. S16. Circular dichroism changes of mixture solution of $\mathbf{3} + \alpha$ -CD upon alternate irradiation with UV and visible light. Inset: Cycling of the photo-mediated *trans* and *cis* isomerization of **3** in the mixture ([**3**] = [α -CD] = 0.1 mM, 25 °C, respectively).

Fig. S17. Circular dichroism spectra of different components of 1 + 2, $2 + \alpha$ -CD, $1 + \alpha$ -CD, $1 + 2 + \alpha$ -CD, $3 + \alpha$ -CD and four-components mixture of $1 + 2 + \alpha$ -CD + 3, ([1] = [2] = [α -CD] = 0.1 mM, [3] = 0.5 mM, 25 °C, respectively).

Fig. S18. TEM images of (a) α -CD + 3, (b) 1 + α -CD + 3, (c) 1 + α -CD. [1] = 0.1 mM, [α -CD] = 0.2 mM, [3] = 0.3 mM, respectively).

Fig. S19. (a) Absorption spectra of a four-components mixture of [3]pseudorotaxane $2 \subset 1 \cdot \alpha - CD + 3$ after UV irradiation at 365 nm, Inset: Absorbance changes at 326 nm versus irradiation time. (b) Cycling of the photo-mediated *trans* and *cis* isomerization of the quaternary mixture ([1] = [α -CD] = 0.05 mM) by alternate irradiation with UV and visible light at 25 °C, ([1] = [2] = [α -CD] = [3] = 0.05 mM, respectively).

Fig. S20. Circular dichroism changes of the four-components mixture of [3]pseudorotaxane $2 \subset 1 \cdot \alpha - CD + 3$ upon alternate irradiation with UV and visible light. Inset: Cycling of the photo-mediated *trans* and *cis* isomerization of **3** in the quaternary mixture ([**1**] = [**2**] = [α -CD] = 0.1 mM, [**3**] = 0.5 mM, 25 °C, respectively).

Generally, azobenzene isomerizes to predominantly trans and cis forms under visible (Vis) and ultraviolet (UV) light, respectively.⁴ According to previous reports,⁵ we can conclude that the photoisomerization of azophenyl unit is a crucial factor to govern the formation and dissociation of inclusion complex between azobenzene and α -CD. The ¹H NMR of $1 + 2 + 3 + \alpha$ -CD after UV irradiation in Fig. 3f (in the text), the Fig. S17, Fig. S19 & S20 jointly indicate the reversibility of the azobenzene photoisomerization in four-components solution, along with the transfer of α-CD from $3 \subset \alpha$ -CD to amphiphilic [2]pseudorotaxane $2 \subset 1$. As a result, owing to the formation and dissociation of inclusion complex $3 \subset \alpha$ -CD, a reversible conformational change in the transition from amphiphilic [2]pseudorotaxane $2 \subset 1$ to water-soluble [3]pseudorotaxane $2 \subset 1 \cdot \alpha$ -CD can be operated by the azobenzene photoisomerization. Combining these spectroscopic, NMR (Fig. 3f) of four-components system after UV irradiation and microscopic investigation results, we can speculate the reversibility of the assembly and disassembly processes was driven by the azobenzene photoisomerization in four-components solution.

References:

- [1] L. Chen, H. Zhang and Y. Liu, J. Org. Chem., 2012, 77, 9766.
- [2] Y. Lei, J. Phys. Chem., 1991, 95, 7918.
- [3] D. Liu, Y. Xie, H. Shao and X. Jiang, Angew. Chem. Int. Ed. 2009, 48, 4406.
- [4] H. M. D. Bandarab and S. C. Burdette, Chem. Soc. Rev., 2012, 41, 1809.

[5] (a) X. Liao, G. Chen, X. Liu, W. Chen, F. Chen and M. Jiang, *Angew. Chem. Int. Ed.*, 2010, 49, 4409. (b) X. Ma, Q. Wang, D.Qu, Y. Xu, F. Ji and H. Tian, *Adv. Funct. Mater.* 2007, 17, 829. (c)
S. K. M. Nalluri and B. J. Ravoo, *Angew. Chem. Int. Ed.*, 2010, 49, 5371. (d) I. Tomatsu, A. Hashidzume and Akira Harada, *J. Am. Chem. Soc.*, 2006, 128, 2226.