Electronic Supplemental Information (ESI)

<u>Title</u>

Two-Step Naked-Eye Detection of a Lectin by Hierarchical Organization of Soft Nanotubes into Liquid Crystal and Gel Phases

Authors

Naohiro Kameta,* Mitsutoshi Masuda, and Toshimi Shimizu

Scheme S1 Synthesis of GlcEG₁, GlcEG₂, and GlcEG₃.

The compound **2** was synthesized according to a following literature: D. Parker, *Macrocycle Synthesis*, Oxford University, 1996.

The glycosylation was carried out according to a following literature: T. Murakami et al., *Carbohydrate Research* 2007, **342**, 1009.

3 (n=3): 1H-NMR (400 MHz, in CDCl3), 7.85 (2H, *m*, phthalimide), 7.23 (2H, *m*, phthalimide), 5.31 (1H, *t*, GlcH-1), 5.26 (1H, *t*, GlcH-3), 5.06 (1H, *t*, GlcH-4), 4.92 (1H, *t*, GlcH-2), 4.31 (1H, *dd*, GlcH-6a), 4.07 (1H, *dd*, GlcH-6b), 3.90 (2H, *t*, -CH₂-), 3.84 (1H, *m*, Glc-H5), 3.75 (4H, *t*, -CH₂-), 3.60-3.67 (12H, *m*, -(OCH₂CH₂O)₃-), 3.26 (2H, *t*, -CH₂-), 2.07 (3H, *s*, Glc-OAc), 2.04 (3H, *s*, Glc-OAc), 2.03 (3H, *s*, Glc-OAc), 2.02 (3H, *s*, Glc-OAc). ESI-MS (m/z): 698.27 [M + H]⁺.

3 (n=1): 1H-NMR (400 MHz, in CDCl3), 3.60-3.67 (4H, *m*, -OCH₂CH₂O-), the other data are similar to those of **3 (n=3)**. ESI-MS (m/z): 610.22 $[M + H]^+$.

3 (n=5): 1H-NMR (400 MHz, in CDCl3), 3.60-3.67 (20H, *m*, -(OCH₂CH₂O)₅-), the other data are similar to those of **3 (n=3)**. ESI-MS (m/z): 786.32 $[M + H]^+$.

GlcEG₃: 1H-NMR (400 MHz, in DMSO-d6), 7.75 (1H, *br*, NH), 4.96 (1H, *d*, GlcOH-4), 4.87 (1H, *d*, GlcOH-3), 4.81 (1H, *t*, GlcOH-2), 4.69 (1H, *t*, GlcH-1), 4.47 (1H, *t*, GlcOH-6), 3.63 (1H, *m*, GlcH-6a), 3.4 (1H, *m*, GlcH-6b, and 16H, *m*, –CH₂-(OCH₂CH₂O)₃-CH₂-), 3.1-2.9 (1H, GlcH-4; 3H, GlcH-2, -3, -5; 2H, Glc-O-CH₂-; 2H, -CH₂-NHCO-), 2.07 (2H, *m*, CO-CH₂-), 1.47 (2H, *m*, CO-CH₂-CH₂-), 1.23 (8H, *m*, -CH₂-), 0.85 (3H, *t*, -CH₃). Anal. calcd for C₂₄H₄₇NO₁₁: C 54.84, H 9.01, N 2.66. Found: C 54.75, H 9.09, N 2.58.

GlcEG₁: 1H-NMR (400 MHz, in DMSO-d6), 3.4 (1H, *m*, GlcH-6b, and 8H, *m*, $-CH_2-OCH_2CH_2O-CH_2$ -), the other data are similar to those of **GlcEG**₃. Anal. calcd for $C_{20}H_{39}NO_9$: C 54.90, H 8.98, N 3.20. Found: C 54.80, H 9.08, N 3.10.

GlcEG₅: 1H-NMR (400 MHz, in DMSO-d6), 3.4 (1H, *m*, GlcH-6b, and 24H, *m*, $-CH_2$ -(OCH₂CH₂O)₅-CH₂-), the other data are similar to those of **GlcEG**₃. Anal. calcd for C₂₈H₅₅NO₁₃: C 54.80, H 9.03, N 2.28. Found: C 53.72, H 10.02, N 2.13.

Fig. S1 (a) TEM image of the 2-nanotubes obtained by binary self-assembly of 1 and TGly in water. (b) TEM image of the $GlcEG_1$ -nanotubes obtained by the heat treatment of the 2-nanotube with $GlcEG_1$. (c) TEM image of the $GlcEG_5$ -nanotubes obtained by the heat treatment of the 2-nanotube with $GlcEG_5$. The hollow cylindrical space of the nanotubes is visible with phosphotungstate as a negative staining reagent.

Fig. S2 DSC profiles of the fully hydrated self-assembled structures. Each nanostructure (1 mg) in the presence of water (20 mL) was placed in an aluminum pan to facilitate DSC measurements. (a) 1-nanotube formed by self-assembly of **1**, (b) 2-nanotube formed by binary self-assembly of **1** and TGly, (c) helical nanofiber formed by self-assembly of GlcEG₁, (d) helical nanofiber formed by self-assembly of GlcEG₅, (f) GlcEG₁-nanotube formed by the heat treatment of the 2-nanotube with GlcEG₁, (g) GlcEG₅-nanotube formed by the heat treatment of the 2-nanotube with GlcEG₅.

Fig. S3 (a) TEM image of the helical nanofibers obtained by self-assembly of $GlcEG_1$ in water. (b) TEM image of the helical nanofibers obtained by self-assembly of $GlcEG_3$ in water. (c) TEM image of the helical nanofibers obtained by self-assembly of $GlcEG_5$ in water.

Fig. S4 The CH deformation (1420 cm^{-1}) and skeletal (1026 cm^{-1}) vibration bands for the triglycine moieties in the 1-nanotube (black line), GlcEG₁-nanotube (green line), GlcEG₃-nanotube (pink line), and GlcEG₅-nanotube (blue line).

Existence of those two bands suggests that TGly and the triglycine moiety of 1 forms polyglycine-II-type hydrogen bond network.*

* (a) T. Shimizu, M. Kogiso, M. Masuda, J. Am. Chem. Soc., 1997, 119, 6209; (b) C. H. Bamford, L. Brown, E. M. Cant, A. Elliott, W. E. Hanby, B. R. Malcolm, Nature, 1955, 176, 396; (c) F. H. C. Crick, A. Rich, Nature, 1955, 176, 780; (d) E.R. Blout, S. G. Linsley, J. Am. Chem. Soc., 1952, 74, 1946.

	1-nanotube	GIcEG ₁ -nanotube	GIcEG ₃ -nanotube	GlcEG₅-nanotube
Amide I / cm ⁻¹	1642	1642	1644	1645
Amide II / cm ⁻¹	1561	1561	1560	1560
δ (CH ₂) / cm ⁻¹	1465 (8.3) ¹	1465 (8.5) ¹	1465 (8.5) ¹	1465 (8.3) ¹
<i>r</i> (CH ₂) / cm ⁻¹	719	719	719	719

 Table S1 IR absorption band of nanotubes

¹Full width half-maximum

Single sharp peaks at 1465 and 719 cm⁻¹ assignable to $\delta(CH_2)$ scissoring and $\gamma(CH_2)$ rocking vibration bands indicates that the lateral chain packing of the oligomethylene spacer in **1** and GlcEG_n is of a triclinic parallel type.**

** a) N. Kameta, K. Ishikawa, M. Masuda, T. Shimizu, *Langmuir*, 2013, 23, 13291; (b) N. Kameta, S. J. Lee, M. Masuda, *J. Mater. Chem. B*, 2013, 1, 276; (c) N. Kameta, M. Masuda, H. Minamikawa, T. Shimizu, *Langmuir*, 2007, 23, 4634; (d) N. Kameta, G. Mizuno, M. Masuda, H. Minamikawa, M. Kogiso, T. Shimizu, *Chem. Lett.*, 2007, 36, 896.

Fig. S5 The zeta potential distributions of the GlcEG₃-nanotube in water at pH 6.0 and 7.6. Each value was obtained from dynamic light scattering (DLS) measurements.

Fig. S6 Relationship between the initial concentration of Con A and the concentration of Con A complexed with the GlcEG_n-nanotubes. The latter concentration was estimated as the concentration of the isolated Con A with the GlcEG_n-nanotubes by filtration procedure, and was determined by UV/VIS spectroscopic measurements. The β values were determined by a nonlinear least squares fitting based on the general equation. Each solid line calculated by using β values is in good agreement with the experimental plots.

$$\beta = \frac{[\text{GlcEG}_n\text{-nanotube-Con A}]}{[\text{GlcEG}_n\text{-nanotube}][\text{Con A}]}$$

[Con A] was considered that Con A has four binding sites for the glucose moiety.

Fig. S7 TEM image of the liquid crystal in the dry state of GlcEG₃-nanotubes complexed with Con A. The hollow cylinder of the nanotubes can be visualized as dark contrasts with the negative staining reagent, 2wt% phosphotungstate.

None, 20 nmol and 80 nmol = [Con A]

Fig. S8 Photographs of samples at pH 6.0 and 7.6 of the GlcEG₃-nanotube (1.1 mg/mL, $\mathbf{1} = 1.8 \,\mu\text{mol}$, TGly = 0.2 μmol , GlcEG₃ = 0.2 μmol) in the presence and absence of Con A.

Fig. S9 SEM image of the GlcEG₅-nanotube dispersion in the presence of 20 nmol Con A.