Supporting Information

Ugi-derived Dehydroalanines as a Pivotal Template in the Diversity Oriented Synthesis of Aza-polyheterocycles

Ma. Carmen García–González, Eduardo Hernández-Vázquez, Raúl E. Gordillo-Cruz and Luis D. Miranda*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, México

Imiranda@unam.mx

Table of contents:

1. Materials and Methods	S1
2. Experimental section	S2
3. NMR-spectra	S26
4. X-Ray diffraction studies	S89
5. References	S92

1. Materials and Methods

spectra were measured on a Nicolet Magna 750 FT-IR spectrometer; absorptions are given in wavenumbers (cm⁻¹). **Mass spectra** were obtained on a JEOL JMS-AX505HA spectrometer. **NMR spectroscopy**: ¹H and ¹³C NMR spectra were recorded on a Varian Gemini-200 and JEOL Eclipse-300 spectrometers, Measurements were carried out at RT. Chemical shifts (δ) are reported in parts per million (ppm) relative to Si(CH₃)₄ for ¹H and ¹³C NMR experiments were carried out in CDCl₃. Coupling constants (*J*) are reported in hertz (Hz), peak multiplicity is indicated as follows: s= singlet, d= doublet, t= triplet, m= multiplet, bs: broad signal for proton spectra. **X-ray diffraction**: X-ray diffraction studies were realized on a Bruker AXS diffractometer with an area detector, Mo Kα radiation, λ =0.71078 Å. Solution and refinement have been carried out by Simon Hernández. Full crystallographic data were submitted as CIF files with the Cambridge Crystallographic Data Center, CCDC Nos. 912003, 912004 and 912005.

2. Experimental section

the literature.¹ Ugi adducts prepared described in from 2were as benzoyloxyacetaldehyde,² the corresponding amines, the appropriate carboxylic acid and an isonitrile, all Ugi products were used without further purification. The elimination procedure also was synthesized according the previous report.¹ The amines were synthesized according literature procedure,³ carboxylic acid were prepared from oxidation of corresponding aldehydes.⁴ The substituted 2-bromobenzylamines were synthesized according to a previously two-step protocol.⁵

Heck reaction

Method A. To a mixture of the corresponding dehydroalanine (1.0 equiv) in degassed DMA, $PdCl_2(PPh_3)_2$ (10% mol) and NaOAc (2 equiv), was added. The resulting solution was refluxed under an argon atmosphere and stirred until TLC indicated full conversion. The mixture was extracted with ethyl acetate (3X20 mL). The organic layers were dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel with a mixture of hexanes:EtOAc as eluent, affording the corresponding compound.

Method B. To a round flask with stir bar was charged with corresponding dehydroalanine (0.108 mmol), $PdCl_2(PPh_3)_2$ (0.0108 mmol), $Cu(OAc)_2$ (0.0216 mmol), NaOAc (0.216 mmol) in 3 ml of DMA, previously degassed. Then the mixture reaction was stirred and heated to 162 °C until starting materials have disappeared. The reaction mixture was diluted with EtOAc and washed with water (3X10 mL). The organic layer was then washed with brine and dried with Na₂SO₄. Organic solvent was removed and the crude product was purified by flash chromatographic on silica gel, to afford pure compound cyclic.

One-pot synthesis of pyrazinoisoquinolines. To a solution of 0.46 mmol of the corresponding Ugi adduct in 7.5 mL of acetonitrile, 1.378 mmol of Cs_2CO_3 were added. The mixture was refluxed under argon atmosphere and monitored by TLC. After 2 h of stirring, the solvent was evaporated under reduced pressure and the residue was diluted with ethyl acetate (20 mL); the solution was washed with water (2 x 10 mL), and saturated NaCl solution (2 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude DKP was then dissolved in 15 mL of toluene and 0.069 mmol of Pd(AcO)₂, 0.138 mmol of PPh₃, and 0.92 mmol of K₂CO₃ were added. The solution was degasificated by bubbling argon for 30 min. After that, the mixture was allowed to reflux for

6–12 h until the completion of the reaction. Then, the mixture was diluted with 20 mL of AcOEt and sequentially washed with water (2 x 15 mL) and with a saturated NaCl solution (2 x 10 mL). The organic layer was evaporated and the product was finally purified by silica gel flash column chromatography silica gel with a mixture of hexanes:EtOAc as eluent, affording the corresponding compound.

Compound 9a, *N*-allyl-*N*-(1-*tert*-butylcarbamoyl-vinyl)-2iodo-benzamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (55%, two steps), m.p. 120–121 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.78 (d, *J* =7.8 Hz, 1H), 7.42–7.29 (m, 2H), 7.02 (t, *J* =7.8 Hz, 1H), 6.10–5.99 (m, 1H), 5.77 (s, 1H), 5.65 (s, 1H),

5.55 (s, 1H), 5.35–5.13 (m, 2H), 4.31 (d, J =6.0 Hz, 2H), 1.31 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 169.7, 162.7, 142.7, 141.5, 139.4, 132.4, 130.4, 127.8, 127.7, 120.4, 119.4, 94.1, 51.7, 51.3, 28.6. **HRMS** (FAB+, M+) calculated for C₁₇H₂₂N₂O₂I [M+1], 413.0722; found 413.0726. **IR** v (cm⁻¹): 3357, 2975, 1646, 1624, 1518, 1389.

Compound 9b, *N*-allyl-*N*-(1-cyclohexylcarbamoyl-vinyl)-2iodo-benzamide, was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a white solid (57 %, two steps), m.p. 102–104 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.77 (d, *J* =7.8 Hz, 1H), 7.25–7.21 (m, 2H), 7.13–6.98 (m, 1H), 6.09–5.98 (m, 2H), 5.86

(s, 1H), 5.57 (s, 1H), 5.28–5.25 (m, 1H), 4.29 (d, J = 3.0 Hz, 2H), 3.77–3.71 (m, 1H), 1.85– 1.61 (m, 5H), 1.37–1.13 (m, 5H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 169.9, 162.4, 141.6, 141.5, 139.3, 132.1, 130.4, 127.7, 127.6, 121.7, 119.5, 94.0, 50.9, 48.9, 32.8, 25.3, 24.9. **HRMS** (FAB+, M+) calculated for C₁₉H₂₃N₂O₂I [M], 438.0807; found 438.0804. **IR** v (cm⁻¹): 3352, 2926, 1673, 1623, 1527, 1397.

Compound 9c, *N*-allyl-*N*-[1-(2,6-dimethylphenylcarbamoyl)-vinyl]-2-iodo-benzamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (65 %, two steps), m.p. 153–155 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.85–7.78 (m, 1H), 7.59–7.55 (m, 1H), 7.42–7.31 (m, 2H), 7.09–7.05 (m, 3H),

6.27 (s, 1H), 6.01 (s, 1H), 5.65 (s, 1H), 5.33–5.17 (m, 3H), 4.35 (s, 1H), 4.02 (d, J =6.0 Hz, 1H), 2.30 (s, 3H), 2.11 (s, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 170.9, 162.7, 142.1, 141.0, 139.4, 135.7, 133.3, 132.0, 130.8, 128.4, 127.8, 123.6, 119.8, 119.4, 119.0, 94.2, 50.3, 18.6. **HRMS** (FAB+) calculated for C₂₁H₂₁N₂O₂I [M+], 460.0643; found 460.0648. **IR** v (cm⁻¹): 3269, 1654, 1625, 1523, 1383.

Compound 9d, *N*-allyl-2-bromo-*N*-(1-*tert*-butylcarbamoylvinyl)-5-methoxy-benzamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (52 %, two steps), m.p. 123–125 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.36 (d, *J* =8.7 Hz, 1H), 6.84 (d, *J* =3.0 Hz, 1H), 6.74 (dd, *J* =3.0, 8.7 Hz, 1H), 6.08–5.94 (m,

1H), 5.77 (s, 1H), 5.71 (s, 1H), 5.51 (s, 1H), 5.34–5.08 (m, 2H), 4.29 (s, 2H), 3.73 (s, 3H), 1.31 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.3, 162.7, 158.5, 142.6, 133.5, 132.3, 120.3, 119.2, 116.8, 113.9, 110.1, 99.0, 55.5, 51.7, 51.1, 28.5. **HRMS** (FAB+, M+) calculated for C₁₈H₂₄N₂O₃Br [M+1], 395.0981; found 395.0970. **IR** ν (cm⁻¹): 3360, 2970, 1651, 1619, 1516, 1393.

Compound 9e, *N*-allyl-2-bromo-*N*-(1-*tert*butylcarbamoyl-vinyl)-4,5-dimethoxy-benzamide, was purified by flash column chromatography (eluent 60:40 hexane/EtOAc). The product was obtained as a white solid (58 %, two steps), m.p. 104–106 °C. ¹H NMR (200 MHz, CDCl₃) δ : 6.92 (s, 1H), 6.90 (s, 1H), 5.97 (bs, 1H),

5.77 (s, 1H), 5.65 (s, 1H), 5.40 (s, 1H), 5.32–5.22 (m, 2H), 4.29 (s, 2H), 3.86 (s, 3H), 3.79 (s, 3H), 1.30 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ: 168.3, 163.0, 150.0, 147.9, 143.0, 132.5, 129.7, 118.7 (2C), 115.0, 111.6, 110.5, 56.1, 55.9, 51.5, 50.8, 28.4. **HRMS** (FAB+,

M+) calculated for $C_{19}H_{26}N_2O_4Br$ [M+1], 425.1068; found 425.1076. **IR** *v* (cm⁻¹): 3357, 2966, 1645, 1622, 1506, 1210.

Compound9f,N-allyl-2-bromo-N-(1-cyclohexycarbamoyl-vinyl)-4,5-dimethoxy-benzamide,waspurifiedbyflashcolumnchromatography(eluent65:35hexane/EtOAc)theproductwasobtainedasa whitesolid(64%, twosteps),m.p.124–126 °C.¹HNMR(300MHz, CDCl₃)ō:

6.92 (s, 1H), 6.85 (s, 1H), 5.98 (s, 2H), 5.75 (s, 1H), 5.43 (s, 1H), 5.30–5.23 (m, 2H), 4.28 (s, 1H), 3.90–3.85 (m, 4H), 3.75 (s, 3H), 1.80–1.60 (m, 5H), 1.37–1.13 (m, 5H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.5, 162.8, 150.1, 148.0, 142.2, 132.3, 130.0, 120.0, 119.0, 115.1, 111.3, 110.6, 56.2, 56.0, 50.7, 48.8, 32.9, 25.4, 24.8. **HRMS** (FAB+, M+) calculated for C₂₁H₂₇N₂O₄Br [M], 450.1160; found 450.1154. **IR** v (cm⁻¹): 3318, 2929, 1625, 1506, 1400, 1256, 1212.

Compound 9g, 6-bromo-benzo[1,3]dioxole-5-carboxylic acid allyl-(1-*tert*-butylcarbamoyl-vinyl)-amide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (78 %, two steps), m.p. 147–149 °C. ¹H NMR (300 MHz, CDCl₃) $\overline{0}$: 6.92 (s, 1H), 6.73 (s, 1H), 6.02 (s, 1H), 5.97 (s,

2H), 5.84 (s, 1H), 5.73 (s, 1H), 5.50 (s, 1H), 5.33–5.24 (m, 2H), 4.28 (d, J= 6.0 Hz, 2H), 1.32 (s 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.1, 162.7, 149.0, 147.0, 142.7, 132.3, 130.7, 120.0, 119.3, 112.7, 111.3, 108.6, 102.1, 51.7, 51.5, 28.5. **HRMS** (FAB+, M+) calculated for C₁₈H₂₂N₂O₄Br [M+1], 409.0762; found 409.0763. **IR** *v* (cm⁻¹): 3396, 2974, 1669, 1620, 1525, 1441, 1242.

Compound 10a, was purified by flash column chromatography (eluent 95:5 hexane/EtOAc). The product was obtained as a white solid (85 %), m.p. 155–158 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.90–7.73 (m, 3H), 7.60–7.44 (m, 3H), 6.20 (s, 1H), 5.11 (dd, *J* =1.2, 10.8 Hz, 2H), 4.48 (t, *J* = 15.9 Hz, 1H), 3.99–3.86 (m, 1H), 3.52 (dd, *J* =1.2, 15.3 Hz, 1H), 2.27 (dd, *J* =1.8, 15.0 Hz, 1H), 1.78 (d, *J* =1.2 Hz,

2H), 1.25 (d, J = 4.2 Hz, 14H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 176.7, 173.1, 169.1, 168.7, 147.9, 146.8, 146.6, 140.6, 133.3, 133.1, 130.4, 129.2, 129.1, 124.5, 124.2, 123.5, 123.1, 109.7, 82.7, 76.3, 55.1, 51.4, 51.3, 47.8, 41.3, 28.6, 28.5, 14.5. **HRMS** (FAB+, M+) calculated for C₁₇H₂₁N₂O₂ [M+1], 285.1611; found 285.1603. **IR** v (cm⁻¹): 3316, 2925, 1708, 1662, 1520, 1358, 1221, 703.

Compound 10b, 2-methylene-5-oxo-2,3-dihydro-1*H*,5*H*pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid cyclohexylamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (81 %), m.p. 148–151 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.82–7.75 (m, 2H), 7.61–7.48 (m, 2H), 6.44–6.11 (m, 1H), 5.11 (d, *J* =11.1 Hz, 1H),

4.50 (t, J = 16.3 Hz, 1H), 3.92 (t, J = 16.3 Hz, 1H), 3.56 (s, 1H), 3. 54 (d, J = 14.7 Hz, 1H), 2.32 (d, J = 15.6 Hz, 1H), 1.58–0.89 (m, 10H). ¹³**C NMR** (75 MHz, CDCl₃) $\bar{0}$: 173.1, 168.7, 146.5, 133.3, 133.1, 129.3, 124.5, 124.2, 123.6, 123.2, 109.8, 55.1, 48.6, 47.8, 41.3, 33.1, 32.6, 25.3, 24.8, 24.7. **HRMS** (FAB+, M+) calculated for C₁₉H₂₃N₂O₂ [M+1], 311.1770; found 311.1760. **IR** v (cm⁻¹): 3318, 2931, 1709, 1665, 1525, 1321.

Compound 10c, 2-methylene-5-oxo-2,3-dihydro-1*H,5H*pyrrolo[2,1-a]isoindole-9b-carboxilic acid (2,6-dimethylphenyl)-amide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (75 %), m.p. 189–193 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.80– 7.78 (m, 3H), 7.61–7.53 (m, 2H), 7.07–6.98 (m, 3H), 5.19 (dd, *J*=3, 9 Hz, 2H), 4.60 (d, *J*=15 Hz, 1H), 4.07 (dd, *J*=1.8, 15 Hz, 1H), 3.64

(dd, *J* =0.9, 15 Hz, 1H), 2.38 (d, *J* = 15 Hz, 1H), 1.95 (s, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ: 172.9, 168.2, 146.4, 146.3, 135.3, 133.2, 132.7, 130.6, 129.5, 128.2, 127.5, 124.4, 123.3, 110.3, 76.4, 48.0, 41.2, 17.9. **HRMS** (FAB+, M+) calculated for $C_{21}H_{21}N_2O_2$ [M+1], 333.1594; found 333.1603. **IR** *v* (cm⁻¹): 3277, 2920, 1702, 1677, 1497, 1365.

Compound 10d, 7-methoxy-2-methylene-5-oxo-2,3dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid *tert*-butyl-amide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (76 %), m.p. 113–116 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.63 (dd, *J* =0.6, 8.4 Hz, 1H), 7.26 (d, *J* =2.7 Hz, 1H), 7.12 (dd, *J* =2.7, 8.4 Hz, 1H), 6.17 (s, 1H), 5.10 (dd, *J* = 2.4, 10.8 Hz, 2H), 4.49 (d, *J* = 15.6 Hz, 1H), 3.91–3.85 (m, 4H), 3.49 (dd, *J* =1.2, 15 Hz, 1H), 2.24 (d, *J* = 15 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ : 173.1, 169.0, 160.8 146.7, 139.3, 131.9, 124.1, 121.1, 109.7, 106.9, 76.0, 55.7, 51.4, 47.8, 41.4, 28.5. HRMS (FAB+, M+) calculated for C₁₈H₂₃N₂O₃ [M+1], 315.1715; found 315.1709. IR v (cm⁻¹): 3327, 2967, 1708, 1673, 1489.

Compound 10e, 7,8-dimethoxy-2-methylene-5-oxo-2,3dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid *tert*-butylamide, was purified by flash column chromatography (eluent 60:40 hexane/EtOAc). The product was obtained as a white solid (72 %), m.p. 161–164 °C. ¹H NMR (300 MHz, CDCl₃) δ: 7.23 (s, 1H), 7.20 (s, 1H), 6.27 (s,

1H), 5.10 (dd, J = 1.6, 10.9 Hz, 2H), 4.47 (d, J = 15.6 Hz, 1H), 3.97 (s, 1H), 3.93 (s, 1H), 3.64 (d, J = 1.2 Hz, 1H), 2.26 (d, J = 15.0 Hz, 1H), 1.25 (s, 9H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 173.8, 169.1, 153.8, 150.6, 146.8, 141.4, 122.3, 109.6, 105.3, 105.0, 75.9, 56.5, 56.2, 51.4, 47.9, 41.5, 28.5. HRMS (FAB+, M+) calculated for C₁₉H₂₅N₂O₄ [M+1], 345.1808; found 345.1814. **IR** v (cm⁻¹): 3335, 2937, 1705, 1672, 1501, 1461, 1323.

Compound 10f, 7,8-dimethoxy-2-methylene-5-oxo-2,3dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid cyclohexylamide, was purified by flash column chromatography (eluent 65:35 hexane/EtOAc). The product was obtained as a white solid (86 %), m.p. 170–172 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.23 (s, 1H), 7.20 (s, 1H), 6.32 (d, J =6.0 Hz, 1H), 5.10 (d, J =9.0 Hz, 2H), 4.48 (d, J =15.0 Hz,

1H), 3.97 (s, 3H), 3.93 (s, 3H), 3.64 (s, 1H), 3.48 (d, J = 15.0 Hz, 1H), 2.31(d, J = 15.0 Hz), 1.89–1.60 (m, 6H), 1.34–0.91 (m, 5H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 173.8, 169.1, 153.8, 150.6, 146.8, 141.2, 122.4, 109.7, 105.3, 105.1, 75.7, 56.5, 56.3, 48.6, 48.0, 41.6, 33.1, 32.7, 25.4, 24.8, 24.7. HRMS (FAB+, M+) calculated for C₂₁H₂₇N₂O₄ [M+1], 371.1963; found 371.1971. **IR** v (cm⁻¹): 3388, 2933, 1707, 1668, 1501, 1329, 1190, 1002.

Compound 10g, 2-methylene-9-oxo-2,3-dihydro-1*H*,9*H*-5,7*dioxa-9a-aza-cyclopenta*[*a*]indacene-3a-carboxilic acid *tert*butylamide, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a white solid (73 %), m.p. 185–188 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.16 (s, 1H), 7.14 (s, 1H), 6.25 (s, 1H), 6.08 (s, 2H), 5.09 (d, J

=12.0 Hz, 2H), 4.46 (d, J =15.0 Hz, 1H), 3.85 (dd, J =1.8, 15.0 Hz, 1H), 3.45 (dd, J =1.2, 15.0 Hz, 1H), 2.25 (d, J =15.0 Hz, 1H), 1.26 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 173.0, 168.8, 152.4, 149.2, 146.6, 143.2, 124.2, 109.7, 103.5, 103.4, 102.2, 75.7, 51.4, 48.0, 41.5, 28.5. **HRMS** (FAB+, M+) calculated for C₁₈H₂₁N₂O₄ [M+1], 329.1497; found 329.1501. **IR** v (cm⁻¹): 3336, 2968, 1696, 1672, 1521, 1465, 1344, 1290, 1149, 1038.

Compound 11a', *N*-but-3-enyl-*N*-(1-*tert*-butylcarbamoylvinyl)-2-iodo-benzamide, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a white solid (77 %), m.p. 110–113 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.78 (d, *J* =8.1 Hz, 1H), 7.30–7.20 (m, 2H), 7.04–6.98 (m, 1H), 5.94–5.85 (m, 1H), 5.82 (s, 1H), 5.73 (s, 1H),

5.56 (s, 1H), 5.24–4.93 (m, 2H), 3.77 (t, J =6.8 Hz, 2H), 2.51 (q, J =6.9 Hz, 2H), 1.32 (s, 9H).¹³**C NMR** (75 MHz, CDCl₃) \overline{o} : 169.9, 162.6, 142.8, 141.6, 139.4, 134.8, 130.3, 128.3, 127.7, 120.6, 117.3, 94.1, 51.8, 47.4, 31.7, 28.6. **HRMS** (FAB+, M+) calculated for C₁₈H₂₃N₂O₂I [M], 426.0796; found 426.0804. **IR** v (cm⁻¹): 3360, 2975, 1669, 1644, 1625, 1517, 1396, 1363, 1319, 1219, 911, 743, 638.

Compound 11b', 2-bromo-*N*-but-3-enyl-*N*-(1-*tert*butylcarbamoyl-vinyl)-5-methoxy-benzamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (62 %), m.p. 115–117 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.36 (d, *J*=9.0 Hz, 1H), 6.80 (d, *J*=3.0 Hz, 1H), 6.73 (dd, *J*=3.0, 9.0 Hz, 1H), 5.93–5.80 (m, 3H),

5.20–4.96 (m, 2H), 3.81 (s, 1H), 3.72 (s, 3H), 3.39 (t, *J*=7.5 Hz, 1H), 2.48 (q, *J*=7.2 Hz, 2H), 1.32 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ: 168.4, 162.6, 158.5, 142.5, 134.8, 133.5, 120.6, 117.2, 116.7, 113.8, 110.1, 99.9, 55.4, 51.7, 41.1, 31.7, 28.5. **HRMS** (FAB+, M+)

calculated for $C_{19}H_{25}N_2O_3Br$ [M], 408.1051; found 408.1049. **IR** v (cm⁻¹): 3343, 2945, 1655, 1617, 1514, 1216.

Compound 11c', *N*-but-3-enyl-*N*-[1-(2,6-dimethylphenylcarbamoyl)-vinyl]-2-iodo-benzamide, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a white solid (67 %), m.p. 152–154 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.86–7.79 (m, 1H), 7.51–7.34 (m, 2H), 7.16–7.04 (m, 4H),

6.36 (s, 1H), 6.06–5.87 (m, 1H), 5.70 (d, *J*=1.2 Hz, 1H), 5.20–4.95 (m, 2H), 3.83 (s, 1H), 3.65 (d, *J*=6.0 Hz, 1H), 3.46 (s, 1H), 2.55 (d, *J*=6.0 Hz, 1H), 2.32 (s, 3H), 2.16 (s, 3H), 1.62 (s, 1H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 170.1, 161.5, 141.5, 141.1, 139.3, 135.2, 134.6, 133.2, 130.3, 128.2, 127.6, 127.5, 127.2, 123.7, 117.2, 94.1, 46.4, 31.4, 18.5. **HRMS** (FAB+, M+) calculated for C₂₂H₂₃N₂O₂I [M], 475.0881; found 475.0883. **IR** *v* (cm⁻¹): 3268, 2945, 1652, 1623, 1523, 1391, 1321, 767, 738, 656.

Compound 11d', 6-bromo-benzo[1,3]dioxole-5carboxylic acid but-3-enyl-(1-*tert*-butylcarbamoylvinyl)amide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (54 %), m.p. 134–135 °C. ¹H NMR (300 MHz, CDCl₃) $\overline{0}$: 6.91 (s, 1H), 6.71 (s, 1H), 5.97 (s, 2H), 5.91–5.80

(m, 3H), 5.23–5.04 (m, 2H), 3.73 (s, 2H), 2.46 (q, *J*=6.0 Hz, 2H), 1.33 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.1, 162.5, 148.9, 146.8, 142.5, 134.8, 130.8, 120.1, 117.1, 112.6, 108.4, 102.0, 99.8, 51.7, 47.3, 31.6, 28.5. **HRMS** (FAB+, M+) calculated for C₁₉H₂₄N₂O₄Br [M+1], 423.0912; found 423.0919. **IR** v (cm⁻¹): 3399, 1668, 1620, 1526, 1484, 1420, 1241, 1033, 908.608.

Compound 11a, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6*H***pyrido[2,1-a]isoindole-10b-carboxylic acid** *tert***-butylamide**, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (74 %), m.p. 208–210 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.86 (d, *J* =7.2 Hz, 1H), 7.67–7.48 (m, 3H), 5.60–5.48 (m, 1H), 5.03 (d, *J* =29 Hz, 1H), 4.74–4.63 (m, 1H), 3.75–3.43 (m, 2H), 2.36–2.04 (m, 1H), 1.94–1.67 (m, 3H), 1.21 (s, 9H). ¹³**C** NMR (75 MHz, CDCl₃, mixture) δ : 167.8, 166.9, 140.3, 132.5, 132.4, 128.9, 124.0, 123.9, 121.7, 121.6, 115.7, 113.0, 51.5, 42.1, 40.1, 39.0, 36.5, 33.7, 28.5, 28.4, 23.2. HRMS (FAB+, M+) calculated for C₁₈H₂₃N₂O₂ [M], 299.1763; found 299.1760. IR *v* (cm⁻¹): 3313, 2966, 1698, 1666, 1526, 1451, 1391, 1224.

Compound 11b, 8-methoxy-2-methylene-6-oxo-1,2,3,4tetrahydro-6*H*-pyrido[2,1-*a*]isoindole-10b-carboxylic acid *tert*-butylamide, was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a white solid (72 %), m.p. 193–196 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.53 (d, *J*=8.4 Hz, 1H), 7.30 (d, *J*=2.4 Hz, 1H), 7.11

(dd, *J*=2.4, 8.4 Hz, 1H), 5.62 (s, 1H), 5.06 (d, *J*=1.5 Hz, 1H), 4.96 (d, *J*=1.5 Hz, 1H), 4.68–4.61 (m, 1H), 3.86 (s, 3H), 3.70 (dd, *J*=1.5, 12.9 Hz, 1H), 2.96 (ddd, *J*=3.9, 12.6, 16.8 Hz, 1H), 2.37–2.31 (m, 1H), 2.17–2.04 (m, 1H), 1.77 (d, *J*=11.4 Hz, 1H), 1.21 (s, 9H). ¹³**C NMR** (75 MHz, CDCI₃) δ : 168.4, 167.1, 160.5, 140.4, 139.2, 122.6, 120.5, 112.9, 106.7, 99.9, 69.9, 55.7, 51.5, 42.3, 40.1, 33.6, 28.5. **HRMS** (FAB+, M+) calculated for C₁₉H₂₅N₂O₃ [M+1], 329.1857; found 329.1865. **IR** v (cm⁻¹): 3301, 2952, 1695, 1668, 1528, 1486, 1391, 1274, 1026.

Compound 11b isomer, 8-methoxy-2-methyl-6-oxo-1,2dihydro-6*H*-pyrido[2,1-*a*]isoindole-10b-carboxylic acid *tert*butylamide, was purified by flash column chromatography (eluent 85:315 hexane/EtOAc). The product was obtained as a white solid (17 %), m.p. 170–1732 °C. ¹H NMR (300 MHz, CDCl₃) $\overline{0}$: 7.68 (d, *J*=8.4 Hz, 1H), 7.30 (d, *J*=2.4 Hz, 1H), 7.15

(dd, *J*=2.7, 8.4 Hz, 1H), 7.03 (dd, *J*=2.7, 8.1 Hz, 1H), 5.80 (s, 1H), 5.15 (d, *J*=8.1 Hz, 1H), 3.87 (s, 3H), 3.10 (dd, *J*=3.9, 11.1 Hz, 1H), 2.53–2.45 (m, 1H), 1.62 (s, 1H), 1.22 (s, 9H), 1.07 (d, *J*=6.9 MHz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.8, 167.2, 160.8, 138.5, 130.8, 124.0, 121.4, 120.0, 118.2, 106.6, 68.4, 55.7, 51.6, 38.9, 28.4, 27.2, 20.5. **HRMS** (FAB+, M+) calculated for C₁₉H₂₅N₂O₃ [M+1], 329.1870; found 329.1865. **IR** v (cm⁻¹): 3337, 2922, 1699, 1663, 1527, 1487, 1348, 1256, 1024.

Compound 11c, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6*H*pyrido[2,1-*a*]isoindole-10b-carboxylic acid (2,6-dimethylphenyl-amide, was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a white solid (71 %), m.p. 218–220 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.78 (d, *J* =7.5 Hz, 1H), 7.70 (dd, *J* =0.9, 7.5 Hz, 1H), 7.62–7.48 (m, 2H), 7.07–7.97 (m, 3H), 5.12 (s, 1H), 5.05 (S, 1H), 4.72 (dd, *J* =6.0, 13.0

Hz, 1H), 3.85 (d, J = 13.0 Hz, 1H), 3.27 (ddd, J = 4.2, 13.0, 17.0 Hz, 1H), 2.45–2.18 (m, 2H), 1.90 (s, 6H), 1.70 (s, 1H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 168.5, 166.8, 146.4, 140.6, 135.6, 133.1, 132.7, 129.6, 129.3, 128.3, 127.6, 124.1, 122.2, 113.7, 70.9, 41.9, 40.6, 33.9, 18.3. HRMS (FAB+, M+) calculated for $C_{22}H_{23}N_2O_4$ [M+1], 347.1761; found 347.1760. IR v (cm⁻¹): 3265, 2921, 1676, 1501, 1468, 1395.

Compound 11d, 6-methylene-9-oxo-5,6,7,8-tetrahydro-9*H*-1,3dioxa-8a-aza-cyclopenta[b]fluorene-4b-carboxylic acid *tert*butylamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (60 %), m.p. 181–184 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.20 (s, 1H), 7.05 (s, 1H), 6.06 (s, 2H), 5.59 (d, *J*=1.8 Hz, 1H), 5.03 (s,

1H), 4.95 (s, 1H), 4.63-4.56 (m, 1H), 3.64 (d, *J*=1.5 Hz, 1H), 2.97-2.87 (m, 1H), 2.31 (d, *J*=1.2 Hz, 1H), 1.78-1.74 (m, 2H), 1.22 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.2, 167.0, 151.9, 148.9, 142.9, 140.4, 123.3, 112.9, 103.4, 102.2, 102.1, 69.8, 51.5, 42.4, 40.2, 33.7, 28.5. **HRMS** (FAB+, M+) calculated for C₁₉H₂₃N₂O₄ [M+1], 343.1661; found 343.1658. **IR** v (cm⁻¹): 3286, 2922, 1664, 1525, 1466, 1293, 1140, 1033.

Compound 12a, the spectroscopy characterization has been previously reported.¹

Compound 12b, *N*-benzyl-*N*-(1-cyclohexylcarbamoyl-vinyl)-2-iodo-benzamide. The product was obtained as a white solid (68 %), m.p. 160–162 °C. ¹H NMR (300 MHz, CDCl₃) δ: 7.76 (d, *J*=6 Hz, 2H), 7.48-7.22(m, 6H), 7.03-6.97(m, 1H), 6.09(s, N-H), 5.76(s, 1H), 5.38(s, 1H), 4.94(s, 2H), 3.63-3.57(m, 1H), 2.04-0.91 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ: 170.0, 162.4,

141.7, 141.4, 139.3, 136.6, 130.4, 129.4, 128.7, 128.0, 127.7 (2C), 121.9, 94.1, 51.6, 48.8, 32.7, 25.7, 25.3, 25.0, 24.9. **HRMS** (FAB+, M+) calculated for $C_{23}H_{25}IN_2O_2$ [M], 489.1039; found 489.1044. **IR** v (cm⁻¹): 3343, 2927, 2854, 1666, 1619, 1524, 695.

Compound 12c, *N*-benzyl-*N*-[1-(2,6-dimethylphenylcarbamoyl)-vinyl)-2-iodo-benzamide. The product was obtained as a white solid (45 %), m.p. 210–212 °C. ¹H NMR (300 MHz, CDCl₃ + DMSO) δ: 9.20(bs, 1H), 7.79 (d, J=9 Hz, 1H), 7.53-7.25(m, 8H), 7.09-7.06 (m, 4H), 5.92 (s, 1H), 5.35(s, 1H), 5.01 (bs, 2H), 2.17 (s. 6H). ¹³C NMR (75

MHz, CDCl₃ +DMSO) δ : 169.7, 161.3, 141.6, 140.1, 138.7, 136.2, 135.1, 133.7, 129.8, 128.5, 128.0, 127.6, 127.3, 127.1, 127.0, 126.8, 123.3, 93.9, 49.5, 18.0. **HRMS** (FAB+, M+) calculated for C₂₅H₂₃IN₂O₂ [M], 511.0883; found 511.0884. **IR** *v* (cm⁻¹): 3280, 2921, 1656, 1623, 1522, 771.

Compound 12d, *N*-(1-*tert*-butylcarbamoyl-vinyl)-2-iodo-*N*-(4-methoxy-benzyl)-benzamide. The product was obtained as a white solid (59 %), m.p. 115–118 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.75 (d, *J*=9 Hz, 1H), 7.55 (dd, 1H, *J*=3 Hz, *J*= 9 Hz, 1H), 7.42-7.24 (m, 4H), 7.03-6.97 (m, 1H), 6.88 (d, *J*=9 Hz, 1H), 5.83 (s, 1H), 5.45 (s, 1H), 5.33 (bs, 1H), 4.89 (s, 2H), 3.81 (s, 3H), 1.17 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ : 169.9, 162.7,

159.7, 142.8, 141.5, 139.5, 131.0, 130.6, 129.1, 128.6, 127.8, 121.8, 114.3, 94.3, 55.5, 51.8, 51.3, 28.5. **HRMS** (FAB+, M+) calculated for $C_{22}H_{25}IN_2O_3$ [M], 493.0988; found 493.0998. **IR** v (cm⁻¹): 3300, 2969, 1665, 1629, 1513, 685.

Compound 12e, *N*-(1-*tert*-butylcarbamoyl-vinyl)-2-iodo-*N*-(1-methyl-1*H*-pyrrol-2-ylmethyl)-benzamide. The product was obtained as a white solid (58 %), m.p. 170–172 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.74 (d, *J*= 9 Hz, 1H), 7.28-7.26 (m, 1H), 7.01-6.99 (m, 1H), 6.62(s, 1H), 6.14-6.04 (m, 2H), 5.75 (s, 1H), 5.47 (s, 1H), 5.23 (bs, 1H), 4.99 (s, 2H), 3.75 (s, 3H), 1.20

(s, 9H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 169.4, 163.0, 142.7, 141.6, 139.4, 130.4, 128.2, 127.8, 127.2, 123.6, 121.2, 111.6, 107.6, 94.1, 51.5, 42.8, 34.6, 28.4. HRMS (FAB+, M+) calculated for C₂₀H₂₄IN₃O₂ [M], 465.0913; found 465.0917. IR *v* (cm⁻¹): 3366, 2966, 1667, 1618, 1519, 735.

Compound 12f, *N*-(1-*tert*-butylcarbamoyl-vinyl)-*N*-furan-2ylmethyl-2-iodo-benzamide. The product was obtained as a yellow solid (51 %), m.p. 118–120 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.76 (d, *J*=9 Hz, 1H), 7.59-7.55 (m, 1H), 7.40-7.23 (m, 3H), 7.04-6.99 (m, 1H), 6.45-6.35 (m, 2H), 5.90 (s, 1H), 5.33 (s, 1H), 4.94 (s, 2H), 1.25 (s, 9H). ¹³C NMR (75 MHz,

CDCl₃) δ : 169.8, 162.6, 150.1, 142.5, 139.6, 130.7, 128.7, 128.3, 127.8, 121.4, 111.0, 110.4, 109.9, 94.1, 51.7, 45.4, 28.6. **HRMS** (FAB+, M+) calculated for C₁₉H₂₁IN₂O₃ [M], 453.0675; found 453.0669. **IR** v (cm⁻¹): 3373, 2962, 1665, 1619, 1521, 748.

Compound 12g, *N*-(1-*tert*-butylcarbamoyl-vinyl)-2-iodo-*N*thiophen-2-ylmethyl-benzamide. The product was obtained as a yellow solid (55 %), m.p. 113–115 °C. ¹H NMR (300 MHz, CDCl₃) δ: 7.75 (d, *J*=9 Hz, 1H), 7.58-7.02 (m, 4H), 7.11-6.96 (m, 2H),5.89 (s, 1H), 5.55 (s, 1H), 5.32(bs, 1H), 5.07 (s, 2H), 1.18 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ: 197.7, 162.6, 145.0,

142.8, 141.1, 139.6, 138.7, 130.7, 128.8, 128.6, 128.2, 127.8, 127.1, 126.7, 121.8, 94.2, 51.7, 47.3, 28.4. **HRMS** (FAB+, M+) calculated for $C_{19}H_{21}IN_2O_2S$ [M], 469.0447; found 469.0441. **IR** v (cm⁻¹): 3394, 2963, 1666, 1616, 1518, 724.

Compound 12h, *N*-(1-*tert*-butylcarbamoyl-vinyl)-2-iodo-*N*-(1-methyl-1*H*-indol-3-ylmethyl)-benzamide. The product was obtained as a pale oil (65 %). ¹H NMR (300 MHz, CDCl₃) δ: 7.84 (d, *J*=7.8 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.35-7.14 (m, 6H), 7.00-6.94 (m, 1H), 6.12 (s, 1H), 5.79 (s, 1H), 5.16 (s, 2H), 3.77 (s. 3H), 0.74 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ: 169.5, 162.6, 143.5, 141.5, 139.5, 137.1,

130.6, 129.9, 128.2, 127.6, 127.2, 122.7, 122.4, 120.4, 119.9, 109.6, 94.2, 51.0, 44.5, 33.0, 27.7. **HRMS** (FAB+, M+) calculated for $C_{24}H_{26}IN_3O_2$ [M], 515.1070; found 515.1066. **IR** v (cm⁻¹): 3380, 1653, 1617, 1511, 740.

Compound 12i, 2-bromo-*N*-(1-*tert*-butylcarbamoyl-vinyl)-*N*-furan-2-ylmethyl-4,5-dimethoxy-benzamide.
The product was obtained as a pail oil (80 %). ¹H NMR (300 MHz, CDCl₃) δ: 7.38 (s, 1H), 6.92-6.88 (m, 2H), 6.41-6.36 (m, 2H), 5.76 (s, 1H), 5.63 (bs, 1H), 5.44 (s, 1H), 4.91 (s, 2H), 3.85 (s, 3H), 3.80 (s, 3H), 1.25 (s, 9H).

¹³**C NMR** (75 MHz, CDCl₃) δ: 168.5, 162.9, 150.4, 148.1, 143.2, 142.4, 129.3, 119.9, 115.4, 112.2, 110.9, 109.9, 56.3, 56.2, 51.7, 45.0, 28.5. **HRMS** (FAB+, M+) calculated for $C_{21}H_{25}BrN_2O_5$ [M], 465.1025; found 465.1022. **IR** *v* (cm⁻¹): 3355, 2968, 1664, 1624, 1508, 754.

Compound 12j, 2-bromo-*N***-(1-***tert*-butylcarbamoyl-vinyl)-**4-methyl**-*N***-thiophen-2-ylmethyl-benzamide**. The product was obtained as a pail oil (71 %). ¹H NMR (300 MHz, CDCl₃) δ: 7.59-7.56 (m, 1H), 7.39-7.26 (m, 3H), 7.13-6.96(m, 3H), 6.00 (s, 1H), 5.51 (s, 1H), 5.07 (s, 2H), 2.29 (s, 3H), 1.16 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ: 168.7, 162.4, 145.1,

142.8, 141.5, 138.7, 134.2, 133.5, 131.0, 128.6, 128.3, 127.9, 127.1, 122.0, 120.1, 51.6, 47.4, 28.3, 21.1. **HRMS** (FAB+, M+) calculated for $C_{20}H_{23}BrN_2O_2S$ [M], 435.0742; found 435.0746. **IR** v (cm⁻¹): 3359, 2969, 1667, 1622, 1516, 755.

Compound 14a, 7-oxo-5,12-dihydro-7*H***-isoindolo[2,1***b***]isoquinoline-11b-carboxylic acid** *tert***-butylamide, was purified by flash column chromatography (eluent 90:10 hexane/EtOAc). The product was obtained as a white solid (61 %), m.p. 208–210 °C. ¹H NMR (300 MHz, CDCl₃) \delta: 7.89 (d,** *J* **=9 Hz, 1H), 7.79 (d,** *J* **=9 Hz, 1H), 7.62 (t,** *J* **= 9 Hz, 1H), 7.53 (t,**

J = 9 Hz, 1H), 7.23 (s, 4H), 5.65 (s, 1H, NH), 5.34 (d, J = 18 Hz, 1H), 4.55 (d, J = 18 Hz, 1H), 4.14 (d, J = 15 Hz, 1H), 2.61 (d, J = 15 Hz, 1H), 1.06 (s, 9H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 169.4, 167.6, 146.8, 132.7, 131.3, 130.3, 130.0, 129.5, 129.0, 127.4, 127.1, 126.3, 123.9, 122.1, 68.1, 51.5, 42.3, 37.4, 28.3. HRMS (FAB+, M+) calculated for $C_{21}H_{22}N_2O_2$ [M], 335.1758; found 335.1760. IR v (cm⁻¹): 3324, 2968, 1698, 1672, 1526, 1361, 740.

Compound 14b, 7-oxo-5,12-dihydro-7*H*-isoindolo[2,1*b*]isoquinoline-11b-carboxylic acid cyclohexylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (27 %), m.p. 220–222 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.87 (d, *J*= 6 Hz, 1H), 7.77 (d, *J*= 9Hz, 1H), 7.64-7.49 (m, 2H), 7.26-7.22

(m, 4H), 5.76 (d, J=9 Hz, 1H), 5.35 (d, J=18 Hz, 1H), 4.55 (d, J=18 Hz, 1H), 4.17 (d, J=15 Hz, 1H), 3.55-3.48 (m, 1H), 2.64 (d, J=15 Hz, 1H), 1.59-0.82 (m, 10H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 169.5, 167.7, 146.9, 132.8, 131.3, 130.4, 130.2, 129.6, 129.4, 127.6, 127.4, 126.6, 124.1, 122.3, 67.9, 48.8, 42.3, 37.3, 33.0, 32.6, 29.9, 25.4, 24.8. HRMS (FAB+, M+) calculated for C₂₃H₂₄N₂O₂ [M], 361.1916; found 361.1915. **IR** *v* (cm⁻¹): 3317, 2929, 1693, 1666, 1530, 742.

Compound 14d, 2-methoxy-7oxo-5,12-dihydro-7*H*isoindolo[2,1-*b*]isoquinoline-11b-carboxylic acid tertbutylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (33 %), m.p. 175–178 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.88 (d, *J*=6Hz, 1H), 7.77 (d, *J*=9 Hz, 1H), 7.65-7.51

(m, 2H), 7.13 (d, *J*=9Hz, 1H), 6.84-6.75 (m, 2H), 5.66 (bs, 1H) 5.27 (d, *J*=15 Hz, 1H), 4.49 (d, *J*=15 Hz, 1H), 4.08 (d, *J*=15 Hz, 1H), 3.80 (s, 3H), 2.58 (d, *J*= 15 Hz, 1H), 1.08 (s, 9H).

¹³**C NMR** (75 MHz, CDCl₃) δ: 169.5, 167.7, 158.8, 146.9, 132.8, 132.7, 130.2, 129.3, 127.5, 124.1, 122.4, 122.2, 114.1, 113.8, 68.2, 55.4, 51.7, 41.9, 37.7, 28.5. **HRMS** (FAB+, M+) calculated for $C_{22}H_{24}N_2O_3$ [M+], 365.1865; found 365.1867. **IR** *v* (cm⁻¹): IR: 3315, 2967, 1696, 1674, 1507, 756.

Compound 14e, 1-methyl-9-oxo-4,10-dihydro-1*H*,9*H*-1,9adiaza-cyclopenta[*b*]fluorene-4a-carboxylic acid *tert*butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (52 %), m.p. 215–218 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.84 (d, *J*= 6 Hz, 1H), 7.68 (d, *J*= 6 Hz, 1H), 7.49-

7.61 (m, 2H), 6.54 (d, *J*=2.7 Hz, 1H), 5.96 (d, *J*= 2.7 Hz, 1H), 5.58 (bs, 1H), 5.29 (d, *J*=15 Hz, 1H), 4.26 (d, *J*= 15 Hz, 1H), 4.06 (d, *J*=15 Hz, 1H), 3.56 (s, 3H), 2.42 (d, *J*=15 Hz, 1H), 1.14 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 169.2, 167.8, 147.2, 132.8, 129.6, 129.1, 124.0, 122.3, 121.9, 121.7, 113.8, 106.5, 69.4, 51.7, 37.1, 33.4, 30.7, 28.7. **HRMS** (FAB+, M+) calculated for C₂₀H₂₄N₃O₂ [M+1], 338.1869; found 338.1867. **IR** *v* (cm⁻¹): 3316, 2922, 1690, 1665, 1522, 730.

Compound 14f, 9-oxo-4,10-dihydro-9*H*-1-oxa-9a-azacyclopenta[*b*]fluorene-4a-carboxylic acid *tert*-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (62 %), m.p. 204–206 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.82 (d, *J*=7.5 Hz, 1H), 7.70-7.48 (m, 3H), 7.35 (d, *J*=18 Hz, 1H), 6.29 (d,

J=18 Hz, 1H), 5.72 (bs, 1H), 5.31 (d, J=18 Hz, 1H), 4.30 (d, J=18 Hz, 1H), 4.08 (d, J=15 Hz, 1H) , 2.38(d, J=15 Hz, 1H), 1.17 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) $\overline{0}$: 169.0, 167.4, 146.6, 144.3, 142.9, 133.04, 129.4, 129.3, 124.1, 121.8, 114.7, 110.4, 69.1, 51.9, 38.0, 29.6, 28.6. **HRMS** (FAB+, M+) calculated for C₁₉H₂₀N₂O₃ [M], 325.1552; found 325.1552. **IR** v (cm⁻¹): 3329, 2962, 1697, 1667, 1523, 730.

Compound 14g, 9-oxo-4,10-dihydro-9*H*-1-thia-9a-azacyclopenta[*b*]fluorene-4a-carboxylic acid *tert*-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (56 %), m.p. 228–230 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.84 (d, *J*= 6Hz, 1H), 7.71 (d, *J*= 6 Hz, 1H), 7.64- 7.49 (m, 2H), 7.21 (d, *J*=

5.1 Hz, 1H), 6.83 (d, *J*=5.1, 1H), 5.69 (bs, 1H), 5.47 (d, *J*=17.7 Hz), 4.51 (d, *J*= 16.8 Hz, 1H), 4.25 (d, *J*=15 Hz, 1H), 2.44 (d, *J*=15 Hz, 1H), 1.14 (s, 9H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 168.8, 167.5, 146.8, 132.9, 132.1, 129.7, 129.4, 129.3, 127.2, 124.5, 124.2, 121.9, 68.5, 51.8, 39.4, 33.2, 28.6. HRMS (FAB+, M+) calculated for C₁₉H₂₀N₂O₂S [M], 340.1245; found 340.1251. **IR** *v* (cm⁻¹): 3322, 2955, 1695, 1667, 1524, 690.

Compound 14h, 6-methyl-9-oxo-4,10-dihydro-9*H*-1-thia-9aaza-cyclopenta[*b*]fluorene-4a-carboxylic acid *tert*butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (68 %), m.p. 233–235 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.70 (d, *J*= 6 Hz,1H), 7.51(s, 1H), 7.31 (d, *J*= 6Hz, 1H), 7.20

(d, J= 6 Hz, 1H), 6.83 (d, J=6 Hz, 1H), 5.78 (bs, 1H), 5.45 (d, J=18 Hz, 1H), 4.49 (d, J=15 Hz, 1H), 4.22 (d, J=15 Hz, 1H), 2.48 (s, 3H), 2.42 (d, J=15 Hz, 1H), 1.15 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.9, 167.6, 147.2, 143.9, 132.1, 130.3, 129.5, 127.2, 127.1, 124.4, 123.9, 122.2, 68.3, 51.8, 39.3, 33.3, 28.6, 22.1. **HRMS** (FAB+, M+) calculated for $C_{20}H_{22}N_2O_2S$ [M], 355.1480; found 355.1486. **IR** v (cm⁻¹): IR: 3327, 2966, 2921, 1693, 1667, 1520, 694.

Compound 14i, 12-methyl-6-oxo-11,12-dihydro-5*H*-6*H*-5a,12-diaza-indeno[1,2-*b*]fluorene-10b-carboxylic acid *tert*-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (61 %), m.p. 238–240 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.88 (d, *J*=9 Hz, 1H), 7.73 (d, *J*=

6Hz, 1H), 7.60-7.50 (m, 3H), 7.31-7.10 (m, 3H), 5.77 (bs, 1H), 5.52 (d, *J*=15 Hz, 1H), 4.51 (d, *J*=15 Hz, 1H), 4.43 (d, *J*=15 Hz, 1H), 3.68 (s, 3H), 2.60 (d, *J*=18 Hz, 1H), 1.12 (s, 9H).

¹³**C NMR** (75 MHz, CDCl₃) δ: 168.8, 167.4, 146.7, 137.9, 132.8, 131.2, 129.9, 129.4, 124.8, 124.1, 121.7, 121.5, 119. 4, 117.8, 109.3, 104.2, 68.7, 51.8, 36.9, 29.4, 29.2, 28.5. **HRMS** (FAB+, M+) calculated for $C_{24}H_{25}N_3O_2$ [M], 387.1947; found 387.1946. **IR** *v* (cm⁻¹): 3332, 2973, 1694, 1669, 1522, 742.

Compound 14j, 6,7-dimethoxy-9-oxo-4,10-dihydro-9*H*-1-oxa-9a-aza-cyclopenta[*b*]fluorene-4a-carboxylic acid *tert*-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (39 %), m.p. 243–245 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.36 (d, *J*= 3Hz, 1H), 7.26 (s, 1H), 7.11 (s, 1H),

6.28 (d, J= 3 Hz, 1H), 5.86 (bs, 1H), 5.26(d, J= 18 Hz, 1H), 4.28(d, J=18 Hz, 1H), 4.03 (d, J=18 Hz, 1H), 3.97 (s, 3H), 3.93(s, 3H), 2.36 (d, J=15 Hz, 1H), 1.18 (s, 9H). ¹³**C NMR** (75 MHz, CDCI₃) δ : 168.8, 167.4, 153.3, 150.2, 144.3, 142.5, 140.4, 121.2, 114.2, 110.1, 106.0, 103.4, 68.2, 56.4, 56.1, 51.4, 37.6, 29.4, 28.3. **HRMS** (FAB+, M+) calculated for C₂₁H₂₄N₂O₅ [M], 385.1763; found 385.1768. **IR** v (cm⁻¹): IR: 3314, 2924, 1692, 1668, 1500.

Compound 17a, **1-(2,6-dimethyl-phenyl)-4-(2-iodobenzoyl)-3,6-dimethylene-piperazin-2-one**, was purified by flash column chromatography (eluent 96:14 hexane/EtOAc). The product was obtained as a yellow solid (79 %), m.p. 147–150 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.85 (d, *J* =8 Hz, 1H), 7.40 (t, *J* =5.1, 6.9 Hz, 1H), 7.25–7.09 (m,

5H), 6.17 (s, 1H), 4.87 (s, 2H), 4.41 (s, 1H), 3.87 (s, 1H), 2.16 (s, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 168.5, 157.7, 140.9, 139.6, 137.8, 135.4, 135.3, 130.9, 128.8, 128.7 (2C), 128.5, 128.4, 118.1, 94.7, 44.1, 17.7. **HRMS** (FAB+, M+) calculated for C₂₁H₂₀IN₂O₂ [M+1], 459.0581; found 459.0570. **IR** v (cm-1): 1679, 1654, 1628, 1404, 1350, 1299, 1163, 988, 774.

Compound 17b, 4-(2-bromo-4-methyl-benzoyl)-1-(2,6dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 8:2 hexane/EtOAc). The product was obtained as light yellow oil (39 %). ¹H NMR (300 MHz, CDCl₃) δ : 7.39 (s, 1H), 7.24– 7.14 (m, 5H), 6.12 (s, 1H), 4.86 (s, 2H), 4.38 (s, 1H), 3.86

(s, 1H), 2.36 (s, 3H), 2.15 (s, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 166.9, 159.5, 141.9, 141.7, 137.9, 136.2, 135.3, 135.1, 133.6, 133.5, 128.9, 128.8, 128.7, 128.6, 128.4, 119.2, 112.8, 106.2, 29.7, 21.1, 17.8, 16.4. **HRMS** (FAB+, M+) calculated for C₂₂H₂₂N₂O₂Br [M+1], 425.0874; found 425.0865. **IR** v (cm⁻¹): 1662, 1640, 1357, 1309, 1165.

Compound 17c, 4-(2-bromo-5-methoxy-benzoyl)-1-(2,6dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a light yellow solid (59 %), m.p. 106–110 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.42 (d, *J* =8.1 Hz, 1H), 7.24–7.14 (m, 3H), 6.87–6.82 (m,

2H), 6.13 (s, 1H), 4.94 (s, 1H), 4.67 (s, 1H), 4.42 (s, 1H), 3.87 (s, 1H), 3.78 (s, 3H), 2.15 (s, 6H). ¹³**C NMR** (75 MHz, CDCI₃) δ : 166.6, 159.0, 157.6, 137.7, 137.2, 135.7, 135.2, 133.9, 128.8, 128.7, 128.5, 127.0, 117.4, 117.2, 114.2, 94.7, 55.5, 44.0, 17.5. **HRMS** (FAB+, M+) calculated for C₂₂H₂₂N₂O₃Br [M+1], 441.0816; found 441.0814. **IR** v (cm-1): 1688, 1624, 1569, 1471, 1415, 1308, 782.

Compound 17d, **4-(2-bromo-5-fluoro-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one**, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (54 %), m.p. 133–136°C. ¹H NMR (200 MHz, CDCl₃) δ : 7.51 (s, 1H), 7.27–7.03 (m, 5H), 6.16 (s, 1H), 4.91 (s, 2H), 4.67

(s, 1H), 4.43 (s, 1H), 3.90 (s, 1H), 2.15 (s, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 165.5, 163.4, 160.1, 157.5, 137.6, 135.2, 134.8, 134.7, 128.8, 128.7, 128.5, 118.6, 118.4, 117.6, 99.9, 95.1, 44.1, 17.6. **HRMS** (FAB+, M+) calculated for C₂₁H₁₉N₂O₂BrF [M+1], 429.0609; found 429.0614. **IR** v (cm⁻¹): 1681, 1644, 1617, 1464, 1425, 1307, 1211, 778.

Compound 17e, 1-(2-chloro-6-methyl-phenyl)-4-(2-iodobenzoyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a light yellow solid (66 %), m.p. 157–160 °C. ¹H NMR (300 MHz, CDCl₃) δ : 7.85 (d, *J* =7.2 Hz, 1H), 7.38 (dd, *J* =1.8, 7.2 Hz, 2H),

7.30–7.25 (m, 3H), 7.11 (t, J =7.5 Hz, 1H), 6.15 (s, 1H), 4.91 (s, 2H), 4.47 (s, 1H), 3.88(s, 1H), 2.23 (s, 3H). **HRMS** (FAB+, M+) calculated for C₂₀H₁₇N₂O₂ICI [M+1], 479.0026; found 479.0023. **IR** v (cm⁻¹): 1684, 1655, 1631, 1405, 1298, 1164, 988, 772, 737.

Compound 17f, 4-(2-bromo-4-methyl-benzoyl)-1-(2-chloro-6-methyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a light yellow oil (69 %). ¹H NMR (300 MHz, CDCl₃) δ: 7.39–7.36 (m, 2H), 7.24–7.15 (m, 4H), 6.13 (s, 1H), 4.97–4.61 (m, 3H),

4.43 (s, 1H), 3.86 (s, 1H), 2.36 (s, 3H), 2.22 (s, 3H). **HRMS** (FAB+, M+) calculated for $C_{21}H_{18}N_2O_2ClBr$ [M], 444.0239; found 444.0240. **IR** v (cm⁻¹): 1636, 1454, 1353, 1301, 1164, 772.

Compound 17g, 1,-(2,6-dimethyl-phenyl)-3,6-dimethylene-4-(4-nitro-benzoyl)-piperazin-2-one, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a yellow solid (64 %), m.p. 142–144 °C. ¹H NMR (300 MHz, CDCl₃) δ: 8.41 (t, *J* =2.4 Hz, 1H), 8.35–8.30 (m,

1H), 7.84–7.80 (m, 1H), 7.62 (t, J =8.0 Hz, 1H), 7.27–7.17 (m, 3H), 6.22 (s, 1H), 4.93 (s, 1H), 4.75 (s, 2H), 4.36 (d, J =1.5 Hz, 1H), 3.90 (d, J =1.5 Hz, 1H), 2.21 (s, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 166.7, 157.5, 148.1, 137.8, 136.9, 135.6, 135.4, 134.8, 134.1, 129.7, 128.9 (2C), 125.6, 123.7, 118.7, 94.5, 45.7, 17.4. **HRMS** (FAB+, M+) calculated for C₂₁H₂₀N₃O₄ [M+1], 378.1454; found 378.1454. **IR** v (cm⁻¹): 1662, 1622, 1526, 1347, 1305, 854, 771, 702.

Compound 18a, 2-(2,6-dimethyl-phenyl)-3-methylene-3,4-dihydro-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione,
was purified by flash column chromatography (eluent 95:5 hexane/EtOAc). The product was obtained as a yellow solid (87 %), m.p. 165–168 °C. ¹H NMR (300 MHz, CDCl₃) δ: 8.48 (d, *J* =9 Hz, 1H), 7.73–7.59 (m, 3H), 7.25–7.16 (m, 4H), 5.06

(s, 2H), 4.63 (s, 1H), 4.08 (s, 1H), 2.16 (s, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 160.6, 156.8, 136.6, 135.6, 135.4, 135.1, 132.9, 130.0, 129.2, 128.9, 128.2, 128.0, 127.0, 111.3, 97.7, 43.1, 17.7. **HRMS** (FAB+, M+) calculated for C₂₁H₁₉N₂O₂ [M+1], 331.1452; found 331.1447. **IR** v (cm-1): 1647, 1629, 1455, 1431, 1373, 1309, 864, 758.

Compound 18b-exo, 2-(2,6-dimethyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 9:1 hexane/EtOAc). The product was obtained as a yellow solid (78 %), m.p. 240–243 °C. ¹H NMR (300 MHz, CDCl₃) δ: 8.37 (d, *J* =8.1 Hz, 1H), 7.61 (s, 1H), 7.50 (s, 1H),

7.45 (d, J = 8.4 Hz, 1H), 7.28–7.18 (m, 3H), 5.05 (s, 2H), 4.62 (d, J = 1.0 Hz, 1H), 4.08 (d, J = 1.0 Hz, 1H), 2.52 (s, 3H), 2.17 (s, 6H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 160.6, 156.9, 143.7, 136.7, 135.6, 135.4, 135.2, 130.8, 130.0, 128.9, 128.8, 128.0, 127.9, 124.8, 113.3, 97.7, 43.0, 21.8, 17.7. HRMS (FAB+, M+) calculated for C₂₂H₂₁N₂O₂ [M+1], 345.1601; found 345.1603. **IR** v (cm⁻¹): 1649, 1629, 1467, 1324, 1301, 827, 765.

Compound 18b-endo, **2-(2,6-dimethyl-phenyl)-3,9dimethyl-2***H***-pyrazino**[**1,2-***b*]**isoquinoline-1,6-dione**, was purified by flash column chromatography (eluent 9:1 hexane/EtOAc). The product was obtained as a yellow solid (5 %), m.p. 219–222 °C. ¹**H NMR** (200 MHz, CDCl₃) δ : 8.46 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 3.6 Hz, 2H), 7.56 (s, 1H),

7.47 (d, J = 12.3 Hz, 1H), 7.29–7.17 (m, 3H), 2.54 (s, 3H), 2.16 (s, 6H), 1.77 (s, 3H). ¹³**C NMR** (50 MHz, CDCI₃) δ : 158.5, 157.4, 143.6, 135.8, 135.1, 130.4, 129.2, 129.0, 128.7, 128.2, 127.6, 123.4, 123.0, 108.2, 103.4, 21.9, 17.8, 17.2. **HRMS** (FAB+, M+) calculated for C₂₂H₂₀N₂O₂ [M], 344.1531; found 344.1525. **IR** v (cm⁻¹): 1641, 1472, 1395, 1346, 1326, 905, 769,726.

Compound 18c, 2-(2,6-dimethyl-phenyl)-8methoxy-3-methylene-3,4-dihydro-2*H*-

pyrazino[1,2-*b***]isoquinoline-1,6-dione,** was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a yellow solid (69 %), m.p. 215–218 °C. ¹H NMR (300

MHz, CDCl₃) δ : 7.87 (d, J =2.7 Hz, 1H), 7.66–7.63 (m, 2H), 7.33(dd, J =2.7, 8.7 Hz, 1H), 7.26–7.17 (m, 3H), 5.08 (s, 2H), 4.63 (J =1.5 Hz, 1H), 4.08 (J =1.5 Hz, 1H), 3.98 (s, 3H), 2.17 (s, 6H). ¹³**C** NMR (75 MHz, CDCl₃) δ : 160.7, 160.2, 156.9, 136.7, 135.6, 135.4, 129.9, 129.0, 128.8, 128.6, 127.8, 123.4, 111.5, 108.1, 99.9, 97.5, 55.8, 43.3, 17.7. HRMS (FAB+, M+) calculated for C₂₂H₂₀N₂O₃ [M], 360.1469; found 360.1474. IR v (cm⁻¹): 1673, 1627, 1500, 1429, 1305, 1019.

Compound 18d, 2-(2,6-dimethyl-phenyl)-8-fluoro-3-methylene-3-methyl-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 90:10 hexane/EtOAc). The product was obtained as a yellow solid (85 %), m.p. 230–233 °C. ¹H NMR (300

MHz, CDCl₃) δ : 8.21 (dd, *J* =3.3, 9.3 Hz, 1H), 7.83–7.78 (m, 2H), 7.72 (d, *J* =1.8 Hz, 1H), 7.50 (ddd, *J* =3.0, 8.4, 11.4 Hz, 1H), 7.31–7.19 (m, 3H), 2.15 (s, 6H), 1.79 (d, *J* =1.8 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 164.1, 160.8, 157.2, 135.8, 135.0, 131.6, 130.7, 130.6, 129.3, 128.8, 124.3, 122.2, 121.9, 113.4, 113.1, 107.9, 107.9, 103.2, 17.7, 17.3. **HRMS** (FAB+, M+) calculated for C₂₁H₁₇N₂O₂F [M], 348.1282; found 348.1274. **IR** v (cm⁻¹): 1687, 1645, 1494, 1332, 763.

Compound 18e, **2-(2chloro-6-methyl-phenyl)-3-methyl-2H-pyrazino[1,2-***b***]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (84 %), m.p. 174–176 °C. ¹H NMR (300 MHz, CDCl₃) \delta: 8.57 (d,** *J* **=8.1 Hz, 1H), 7.83–7.74 (m, 4H), 7.68–7.62 (m, 1H), 7.41–7.29**

(m, 3H), 2.23 (s, 3H), 1.84 (s, 3H). ¹³**C** NMR (75 MHz, CDCl₃) $\overline{\delta}$: 160.5, 156.8, 138.5, 136.4, 135.0, 134.1, 132.9, 132.7, 130.2, 129.9, 129.8, 129.5, 129.3, 128.2, 128.1, 128.0,

111.6, 98.1, 43.2, 18.1. **HRMS** (FAB+, M+) calculated for $C_{20}H_{15}N_2O_2CI$ [M+1], 350.0822; found 350.0822. **IR** v (cm⁻¹): 1643, 1596, 1462, 1409, 1332, 1147, 864, 762, 689.

Compound 18f-exo, 2-(2chloro-6-methyl-phenyl)-9methyl-3-methylene-3,4-dihydro-2*H*-pyrazino[1,2b]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (52 %), m.p. 244–

246 °C. ¹H NMR (300 MHz, CDCl₃) δ : 8.37 (d, *J* =8.4 Hz, 1H), 7.62 (s, 1H), 7.50-7.40 (m, 3H), 7.34-7.28 (m, 2H), 5.15 (d, *J* =15.3 Hz, 1H), 5.01 (d, *J* =15.3 Hz, 1H), 4.68 (d, *J* =1.8 Hz, 1H), 4.11 (d, *J* =1.8 Hz, 1H), 2.52 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 160.5, 156.9, 143.7, 138.5, 136.5, 135.1, 134.1, 132.8, 130.9, 129.8 (2C), 129.5, 128.2, 128.0, 127.9, 124.9, 111.6, 98.0, 43.1, 21.8, 18.1. HRMS (FAB+, M+) calculated for C₂₁H₁₈N₂O₂Cl [M+1], 365.1048; found 365.1057. **IR** v (cm⁻¹): 1674, 1634, 1462, 1323, 1299, 910, 768.

Compound 18f-endo, 2-(2chloro-6-methyl-phenyl)-3,9dimethyl-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione,
was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (46 %), m.p. 239–243 °C. ¹H NMR (300 MHz,

CDCl₃) δ : 8.45 (d, *J* =8.4 Hz, 1H), 7.76 (s, 1H), 7.73 (d, *J* =1.2 Hz, 1H), 7.56 (s, 1H), 7.49– 7.40 (m, 2H), 7.36–7.29 (m, 2H), 2.54 (s, 3H), 2.22 (s, 3H), 1.83 (d, *J* =1.2 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ : 158.4 157.3, 143.6, 138.7, 135.0, 133.7, 133.3, 130.5, 130.2, 129.4, 128.7, 128.3, 127.9, 127.6, 123.2, 123.1, 108.6, 103.4, 21.9, 18.1, 17.0. **HRMS** (FAB+, M+) calculated for C₂₁H₁₇N₂O₂Cl [M], 364.0982; found 364.0979. **IR** v (cm⁻¹): 1648, 1619, 1457, 1395, 1347, 1322, 905, 770.

Compound 18g, 2-(2,6-dimethyl-phenyl)-3-methyl-9-nitro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 90:10 hexane/EtOAc). The product was obtained as a white solid (82 %), m.p. 243–

245 °C. ¹**H NMR** (300 MHz, CDCl₃) δ: 8.21 (dd, *J* = 2.7, 9.0 Hz, 1H), 7.83 (m, 2H), 7.72 (s, 1H), 7.50 (ddd, *J* =2.7, 8.1, 8.7 Hz, 1H), 7.29 (t, *J* = 6.3 Hz, 1H), 7.22–7.19 (m, 2H), 2.15

(s, 6H), 1.79 (d, *J* =1.5 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ: 164.1, 160.8, 157.2, 135.7, 130.6, 130.5, 129.3, 128.7, 124.3, 122.2, 121.9, 113.4, 113.1, 107.9, 107.8, 103.1, 17.7, 17.3. **IR** v (cm⁻¹): 1645, 1601, 1412, 1348, 1333, 947, 763.

Compound 22a, 2-*tert*-butyl-2*H*-pyrazino[1,2-*b*]isoquinoline-1,4(3*H*,6*H*)-dione was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (64 %), m.p. 104–106 °C. ¹H-NMR (400 MHz, CDCl₃) δ :1.51 (s, 9H, CH₃), 4.13 (s, 2H, COCH₂N), 5.01 (s, 2H, ArCH₂), 6.98 (s,

1H, C=CH), 7.16–7.13 (m, 1H, ArH), 7.21–7.19 (m, 1H, ArH), 7.27–7.24 (m, 2H, ArH). ¹³**C**-NMR (100 MHz, CDCl₃) δ : 27.7, 44.0, 47.0, 58.2, 115.1, 125.7, 127.1, 128.2, 128.9, 129.0, 129.1, 129.8, 159.2, 162.7. **IR** v (cm⁻¹): 3367, 3063, 2978, 2928, 1677, 1622, 1421, 1199. **MS (DART+)** m/z: 271 (M+H); **HRMS** m/z calcd for C₁₆H₁₉N₂O₂ [M+H], 271.14465; found 271.14407.

Compound 22b, 2-cyclohexyl-2*H*-pyrazino[1,2*b*]isoquinoline-1,4(3*H*,6*H*)-dione was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (71 %), m.p. 58–60 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 1.46–1.36 (m, 7H, CH₂), 1.85-1.69 (m, 3H,

CH₂) , 4.04 (s, 2H, COCH₂N), 4.51 (br s, 1H, NCH), 5.03 (s, 2H, ArCH₂), 7.00 (s, 1H, C=CH), 7.15–7.13 (m, 1H, ArH), 7.28–7.23 (m, 3H, ArH). ¹³C-NMR (75.5 MHz, CDCI₃) δ : 25.5, 25.6, 29.3, 44.2, 45.2, 52.9, 115.7, 125.9, 127.2, 128.1, 128.3, 129.3, 129.4, 129.7, 157.8, 162.2. **IR** v (cm⁻¹): 2930, 2855, 1678, 1617, 1309, 1239, 1197, 1044, 758, 728. **MS** (DART+) m/z: 297 (M+H); **HRMS** m/z calcd for C₁₈H₂₁N₂O₂ [M+H], 297.16030; found 297.16023.

Compound 22c, 2-(2,6-dimethylphenyl)-2H-pyrazino[1,2*b***]isoquinoline-1,4(3H,6H)-dione** was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a colorless oil (72 %). ¹**H-NMR** (400 MHZ, CDCl₃) δ: 2.24 (s, 6H, CH₃), 4.25 (s, 2H, COCH₂N), 5.15 (s, 2H, ArCH₂),

7.11 (s 1H, C=CH), 7.21–7.16 (m, 4H, ArH), 7.32–7.26 (m, 3H, ArH). ¹³**C-NMR** (100 MHz, CDCl₃) δ: 17.7, 44.4, 51.3, 116.4, 125.9, 127.3, 127.5, 128.3, 128.8, 129.0, 129.3, 129.4,

129.5, 135.2, 137.1, 157.3, 161.6. **IR** v (cm⁻¹): 3332, 3009, 2923, 1682, 1625, 1478, 1401. **MS (DART+)** m/z: 319 (M+H); **HRMS** m/z calcd for $C_{20}H_{19}N_2O_2$ [M+H], 319.14465; found 319.14454.

Compound 22d, 2-*tert*-butyl-8-methoxy–2*H*-pyrazino[1,2*b*]isoquinoline-1,4(3*H*,6*H*)-dione was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a yellow solid (63 %). ¹H-NMR (300 MHZ, CDCl₃) δ : 1.51 (s, 9H, CH₃), 3.81 (s, 3H, CH₃O), 4.12

(s, 2H, COCH₂N), 4.99 (s, 2H, ArCH₂), 6.69 (d, J = 2.4 Hz, 1H, ArH), 6.78 (dd, J = 8.4 and 2.4 Hz, 1H, ArH), 6.95 (s, 1H, C=CH), 7.14 (d, J = 8.4 Hz, 1H, ArH). ¹³C-NMR (75.5 MHz, CDCI₃) δ : 27.9, 44.2, 47.1, 55.5, 58.2, 112.0, 113.3, 115.3, 122.7, 127.0, 128.8, 131.1, 159.7, 160.6, 162.8. **IR** ν (cm⁻¹): 3368, 2970, 2933, 1675, 1618, 1418, 1198. **MS (DART+)** m/z: 300 (M+H); **HRMS m/z** calcd for C₁₇H₂₀N₂O₃ [M+H], 300.1474; found 300.1476.

Compound 22e, 2-*tert*-butyl-8-fluoro–2*H*-pyrazino[1,2*b*]isoquinoline-1,4(3*H*,6*H*)-dione was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as an off-white solid (63 %); m.p. 141– 143 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 1.51 (s, 9H, CH₃), 4.14

(s, 2H, COCH₂N), 5.00 (s, 2H, ArCH₂), 6.86 (d, J = 8.7 Hz, 1H, ArH), 6.97–6.97 (comp, 2H, ArH and C=CH), 7.17 (dd, J = 8.25 and 5.4 Hz, 1H, ArH). ¹³C-NMR (75.5 MHz, CDCl₃) δ : 27.8, 43.92 (d, J = 2.8 Hz), 47.1, 58.3, 113.4 (d, J = 30.7 Hz), 114.0 (d, J = 2.1 Hz), 115.2 (d, J = 29 Hz), 126.1 (d, J = 4.3 Hz), 128.5 (d, J = 3.9 Hz), 128.9 (d, J = 11.1 Hz), 131.5 (d, J = 10.7 Hz), 159.1, 162.7, 163.0 (d, J = 331.3). **IR** ν (cm⁻¹):3308, 3064, 2971, 2921, 1675, 1618, 1404, 1198, 728. **MS (DART+)** m/z: (M+H) 289; **HRMS m/z** calcd for C₁₆H₁₈FN₂O₂ [M+H], 289.13523; found 289.13453.

Compound 22f, 9-(*tert*-butyl)-8,9-dihydro-5*H*-[1,3]dioxolo[4,5-*g*]pyrazino[1,2-*b*]isoquinoline-7,10-dione was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a yellowish solid

(63%); m.p. 103–105 °C. ¹H-NMR (300 MHz, CDCl₃) δ: 1.51 (s, 9H, CH₃), 4.12 (s, 2H,

COCH₂N), 4.92 (s, 2H, ArCH₂), 5.97 (s, 2H, OOCH₂), 6.62 (s, 1H, ArH), 6.67 (s, 1H, ArH), 6.85 (s, 1H, C=CH). ¹³**C-NMR** (75.5 MHz, CDCl₃) δ : 27.8, 44.1, 47.1, 58.2, 101.5, 106.7, 107.3, 115.4, 123.6, 123.9, 127.5, 147.5, 148.5, 159.5, 162.8. **IR** ν (cm⁻¹) 2963, 2912, 1678, 1630, 1599, 1399, 1242, 1194, 1030, 928. **MS (DART+)** m/z: (M+H) 315; **HRMS m/z** calcd for C₁₇H₁₉N₂O₄ [M+H], 315.13448 ; found 315.13529.

Compound 22g, 2-(2,6-dimethylphenyl)-8-methoxy-2*H***-pyrazino[1,2-***b***]isoquinoline-1,4(3***H***,6***H***)-dione was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a yellow oil**

(50%).¹**H-NMR** (300 MHz ,CDCl₃) δ :2.42 (s, 6H, CH₃Ar), 4.01 (s, 3H, CH₃O), 4.42 (s, 2H, COCH₂N), 5.29 (s, 2H, ArCH₂), 6.93 (s, 1H, C=CH), 6.99 (dd, *J* = 8.4 and 2.4 Hz, 1H, ArH), 7.41–7.31 (m, 5H, ArH). ¹³**C-NMR** (75.5 MHz ,CDCl₃) δ : 17.8, 44.7, 51.4, 55.6, 112.1, 113.5, 116.6, 122.2, 125.4, 128.8, 129.0, 129.1, 131.4, 135.3, 137.3, 157.7, 161.0, 161.6. **IR** ν (cm⁻¹): 2921, 2852, 1725, 1673, 1620, 1463, 1398, 1265, 1027, 910, 728. **MS** (**DART+)** m/z: 349 (M+H); **HRMS m/z** calcd for C₂₁H₂₁N₂O₃ [M+H], 349.15522 ;found 349.15438.

3. NMR Spectra

Sciparts per Million (130

Compound 9a, N-allyl-N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-benzamide

S27

Compound 9b, N-allyl-N-(1-cyclohexylcarbamoyl-vinyl)-2-iodo-benzamide

Compound 9d, N-allyl-2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-5-methoxy-benzamide

Compound 9e, N-allyl-2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-4,5-dimethoxy-benzamide

Compound 9f, N-allyl-2-bromo-N-(1-cyclohexycarbamoyl-vinyl)-4,5-dimethoxy-benzamide

. 100

90 80 f1 (ppm)

Compound 10a, 9b-[1-(tert-butylamino)vinyl]-2-methyl-3,9b-dihydro-5H-pyrrolo[2,1-a]isoindol-5-one

Compound 10b, 2-methylene-5-oxo-2,3-dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid cyclohexylamide

Compound 10c, 2-methylene-5-oxo-2,3-dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid (2,6-dimethyl-phenyl)-amide

Compound 10d, 7-methoxy-2-methylene-5-oxo-2,3-dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid *tert*-butyl-amide

Compound 10e, 7,8-dimethoxy-2-methylene-5-oxo-2,3-dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid *tert*-butylamide

Compound 10f, 7,8-dimethoxy-2-methylene-5-oxo-2,3-dihydro-1*H*,5*H*-pyrrolo[2,1-*a*]isoindole-9b-carboxilic acid cyclohexylamide

109.64-103.51 103.41 102.23

110

100 90 f1 (ppm)

124.17-

120

130

173.00--168.82--

> . 170

160

. 180 152.41-149.19-146.58-143.18-

150

140

Compound 10g, 2-methylene-9-oxo-2,3-dihydro-1*H*,9*H-5,7-dioxa-9a-aza-cyclopenta*[*a*]indacene-3a-carboxilic acid *tert*-butylamide

0

1

28.47

30

20

10

40

51.40 47.95 41.48

50

75.74

70

60

80

Compound 11a', N-but-3-enyl-N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-benzamide

Compound 11b', 2-bromo-N-but-3-enyl-N-(1-tert-butylcarbamoyl-vinyl)-5-methoxy-benzamide

Compound 11c', N-but-3-enyl-N-[1-(2,6-dimethyl-phenylcarbamoyl)-vinyl]-2-iodo-benzamide

Compound 11d', 6-bromo-benzo[1,3]dioxole-5-carboxylic acid but-3-enyl-(1-tert-butylcarbamoyl-vinyl)amide

Compound 11b, 8-methoxy-2-methylene-6-oxo-1,2,3,4-tetrahydro-6*H*-pyrido[2,1-*a*]isoindole-10b-carboxylic acid *tert*-butylamide

Compound 11b isomer, 8-methoxy-2-methyl-6-oxo-1,2-dihydro-6*H*-pyrido[2,1-*a*]isoindole-10b-carboxylic acid *tert*-butylamide

Compound 11c, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6*H*-pyrido[2,1-*a*]isoindole-10b-carboxylic acid (2,6-dimethyl-phenyl-amide

Compound 11d, 6-methylene-9-oxo-5,6,7,8-tetrahydro-9*H*-1,3-dioxa-8a-aza-cyclopenta[b]fluorene-4bcarboxylic acid *tert*-butylamide

Compound 12b, N-benzyl-N-(1-cyclohexylcarbamoyl-vinyl)-2-iodo-benzamide

Compound 12c, *N*-benzyl-*N*-[1-(2,6-dimethyl-phenylcarbamoyl)-vinyl)-2-iodo-benzamide

Compound 12d, N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(4-methoxy-benzyl)-benzamide

Compound 12e, N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-pyrrol-2-ylmethyl)-benzamide

Compound 12g, N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-thiophen-2-ylmethyl-benzamide

Compound 12h, N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-indol-3-ylmethyl)-benzamide

Compound 14a, 7-oxo-5,12-dihydro-7H-isoindolo[2,1-b]isoquinoline-11b-carboxylic acid tert-butylamide

Compound 14b, 7-oxo-5,12-dihydro-7H-isoindolo[2,1-b]isoquinoline-11b-carboxylic acid cyclohexylamide

Compound 14d, 2-methoxy-7oxo-5,12-dihydro-7*H*-isoindolo[2,1-*b*]isoquinoline-11b-carboxylic acid *tert*-butylamide

Compound 14e, 1-methyl-9-oxo-4,10-dihydro-1*H*,9*H*-1,9a-diaza-cyclopenta[*b*]fluorene-4a-carboxylic acid *tert*-butylamide

Compound 14f, 9-oxo-4,10-dihydro-9H-1-oxa-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide

Compound 14g, 9-oxo-4,10-dihydro-9H-1-thia-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-

Compound 14h, 6-methyl-9-oxo-4,10-dihydro-9*H*-1-thia-9a-aza-cyclopenta[*b*]fluorene-4a-carboxylic acid *tert*-butylamide

Compound 14i, 12-methyl-6-oxo-11,12-dihydro-5*H*-6*H*-5a,12-diaza-indeno[1,2-*b*]fluorene-10b-carboxylic acid *tert*-butylamide

Compound 14j, 6,7-dimethoxy-9-oxo-4,10-dihydro-9*H*-1-oxa-9a-aza-cyclopenta[*b*]fluorene-4a-carboxylic acid *tert*-butylamide

Compound 17a, 1-(2,6-dimethyl-phenyl)-4-(2-iodo-benzoyl)-3,6-dimethylene-piperazin-2-one

Compound 17b, 4-(2-bromo-4-methyl-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one

Compound 17c, 4-(2-bromo-5-methoxy-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one

Compound 17d, 4-(2-bromo-5-fluoro-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one

Compound 17e, 1-(2-chloro-6-methyl-phenyl)-4-(2-iodo-benzoyl)-3,6-dimethylene-piperazin-2-one

Compound 17f, 4-(2-bromo-4-methyl-benzoyl)-1-(2-chloro-6-methyl-phenyl)-3,6-dimethylene-piperazin-2-one

Compound 17g, 1,-(2,6-dimethyl-phenyl)-3,6-dimethylene-4-(4-nitro-benzoyl)-piperazin-2-one

Compound 18a, 2-(2,6-dimethyl-phenyl)-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione

Compound18b-exo, 2-(2,6-dimethyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2*H*-pyrazino[1,2*b*]isoquinoline-1,6-dione

Compound18b-endo, 2-(2,6-dimethyl-phenyl)-3,9-dimethyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione

Compound 18d, 2-(2,6-dimethyl-phenyl)-8-fluoro-3-methylene-3-methyl-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione

Compound 18e, 2-(2chloro-6-methyl-phenyl)-3-methyl-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione

Compound 18f-exo, 2-(2chloro-6-methyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2*H*-pyrazino[1,2*b*]isoquinoline-1,6-dione

Compound 18f-endo, 2-(2chloro-6-methyl-phenyl)-3,9-dimethyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione

Compound 18g, 2-(2,6-dimethyl-phenyl)-3-methyl-9-nitro-2*H*-pyrazino[1,2-*b*]isoquinoline-1,6-dione

Compound 22b, 2-cyclohexyl-2*H*-pyrazino[1,2-*b*]isoquinoline-1,4(3*H*,6*H*)-dione

Compound 22c, 2-(2,6-dimethylphenyl)-2*H*-pyrazino[1,2-*b*]isoquinoline-1,4(3*H*,6*H*)-dione

Compound 22f, 9-(*tert*-butyl)-8,9-dihydro-5*H*-[1,3]dioxolo[4,5-g]pyrazino[1,2-b]isoquinoline-7,10-dione

Compound 22g, 2-(2,6-dimethylphenyl)-8-methoxy-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione

4. X-Ray crystallographic

The X-ray diffraction analysis of **10a**, **11a** and **14a** confirmed the N-heterocyclic structure, full crystallographic data were submitted as CIF files with the Cambridge Crystallograpic Data Center, CCDC Nos. 912003 for **10a**, 912004 for **11a**, and 912005 for **14a**. These data can be obtained free of change from The Cambridge Crystallograpic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

4.1. Compound 10a (CCDC 912003)

Figure 1. ORTEP diagram of the molecular structure of compound 10a. Hydrogen atoms were omitted for clarity.

Empirical formula	$C_{17} H_{20} N_2 O_2$	
Formula weight	284.35	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.074(2) Å	α= 105.491(4)°
	b = 9.586(2) Å	β= 97.554(4)°
	c = 10.271(2) Å	γ= 108.975(4)°
Volume	790.4(3) Å ³	
Z	2	
Density (calculated)	1.195 Mg/m ³	
Absorption coefficient	0.079 mm ⁻¹	
F(000)	304	
Crystal size / colour / shape	0.18 x 0.18 x 0.10 mm / Colorless / Prism	
Theta range for data collection	2.12 to 25.39°	
Index ranges	-10<=h<=10, -11<=k<=11, -12<=l<=12	
Reflections collected	6602	
Independent reflections	2905 [R(int) = 0.0329]	
Completeness to theta = 25.39°	99.7 %	
Measurement device	Bruker Smart APEX AXS CCD area detector 01-67	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2905 / 97 / 222	
Goodness-of-fit on F ²	0.828	
Final R indices [I>2sigma(I)]	R1 = 0.0431, wR2 = 0.0977	
R indices (all data)	R1 = 0.0941, wR2 = 0.1110	
Largest diff. peak and hole	0.123 and -0.118 e.Å ⁻³	

4.2. Compound 11a (CCDC 912004)

Figure 2. ORTEP diagram of the molecular structure of compound 11a. Hydrogen atoms were omitted for clarity.

 $C_{18} H_{22} N_2 O_2$

298.38

P 21/c

298(2) K

0.71073 Å

Monoclinic

a = 9.1496(13) Å

b = 9.3085(13) Å

α= 90°

 $\beta = 95.325(2)^{\circ}$

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

c = 19.945(3) Å γ= 90° 1691.3(4) Å³ Volume Ζ 4 Density (calculated) 1.172 Mg/m³ Absorption coefficient 0.077 mm-1 F(000) 640 Crystal size / colour / shape 0.36 x 0.22 x 0.15 mm / Colorless / Prism Theta range for data collection 2.05 to 25.35° Index ranges -10<=h<=11, -11<=k<=11, -23<=l<=24 **Reflections collected** 13090 Independent reflections 3088 [R(int) = 0.0645] Completeness to theta = 25.35° 99.9 % Measurement device Bruker Smart APEX AXS CCD area detector Absorption correction None Full-matrix least-squares on F² Refinement method Data / restraints / parameters 3088 / 70 / 222 Goodness-of-fit on F^2 0.943 Final R indices [I>2sigma(I)] R1 = 0.0540, wR2 = 0.1274 R indices (all data) R1 = 0.1136, wR2 = 0.1462 0.179 and -0.138 e.Å-3 Largest diff. peak and hole

4.3. Compound 14a (CCDC-912005)

Figure 3. ORTEP diagram of the molecular structure of compound 14a. Hydrogen atoms were omitted for clarity.

Empirical formula	$C_{21} H_{22} N_2 O_2$		
Formula weight	334.41		
Temperature	298(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.2332(15) Å	$\alpha = 105.017(3)^{\circ}$	
	b = 10.3088(17) Å	$\beta = 100.269(3)^{\circ}$	
	c = 10.7141(18) Å	γ= 102.043(3)°	
Volume	933.7(3) Å ³		
Z	2		
Density (calculated)	1.189 Mg/m ³		
Absorption coefficient	0.077 mm ⁻¹		
F(000)	356		
Crystal size / colour / shape	0.34 x 0.18 x 0.10 mm / Colorless / Prism		
Theta range for data collection	2.03 to 25.38°		
Index ranges	-11<=h<=11, -12<=k<=12, -12<=l<=12		
Reflections collected	7775		
Independent reflections	3415 [R(int) = 0.0371]	3415 [R(int) = 0.0371]	
Completeness to theta = 25.38°	99.5 %	99.5 %	
Measurement device	Bruker Smart APEX AXS	Bruker Smart APEX AXS CCD area detector 01-67	
Absorption correction	None		
Refinement method	Full-matrix least-squares of	Full-matrix least-squares on F ²	
Data / restraints / parameters	3415 / 1 / 232	3415 / 1 / 232	
Goodness-of-fit on F ²	0.922		
Final R indices [I>2sigma(I)]	R1 = 0.0462, wR2 = 0.108	R1 = 0.0462, wR2 = 0.1081	
R indices (all data)	R1 = 0.0707, wR2 = 0.118	R1 = 0.0707, wR2 = 0.1180	
Largest diff. peak and hole	0.144 and -0.199 e.Å ⁻³	0.144 and -0.199 e.Å ⁻³	

5. References

- [1] K. Pérez-Labrada, E. Flórez-López, E. Paz-Morales, L. D. Miranda, D. Rivera, *Tetrahedron Lett.* 2011, *52*, 1635–1638.
- [2] K. A. Watanabe, J. Du, Synth. Commun. 2004, 34, 1925-1930.
- [3] P. Kustchy, M. Dzurilla, M. Takasugi, M. Török, I. Achbergerová, R. Homzová, M. Rácová, *Tetrahedron* 1998, 54, 3549-3566.
- [4] K J. Zhang, Y. Zhang, Y. Shan, W. Li, N. Ma, L. He, Eur. J. Med. Chem. 2010, 45, 2798-2805.
- [5] B. D. Chapsal, Z. Hua, I. Ojima. Tetrahedron: Asymmetry 2006, 17, 642–657.