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Materials

Triton X-100 was purshased from Alfa Aesar and used as received. The ionic liquid 

tetrabutylphosphonium trifluoroacetate ([P4444][CF3COO]) was prepared according to the 

literature.1 Water was doubly deionized and distilled. The samples of the 

[P4444][CF3COO]/H2O/Triton X-100 ternary system were stirred for at least 10 min to obtain 

macrohomogeneous solutions before any characterization.

Characterization

The size and size distributions of the investigated self-assembly systems were determined 

by dynamic light scattering (DLS) using Zetasizer Nano S90 (ZEN1690) with a He–Ne laser 

operating at 633 nm. All measurements were made at a scattering angle of 90o. Surface 

tension measurements were carried out by a surface tensiometer (model JYW-200B, 

Chengde Dahua Instrument Co., Ltd., accuracy (0.01 mN/m). The surface tension was 

determined with a single-measurement method. All measurements were repeated at least 

twice. A low-frequency conductivity analyzer (model MP522, Shanghai Sanxin Instrument 

Co., Ltd., accuracy ±1%) was used to measure the electrical conductivity of the aqueous 
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solutions. Freeze-fracture transmission electron microscopy (FF-TEM) observations on the 

replicated samples were carried out with a JEOL TEM 200CX electron microscope. The 

replicas were first prepared as follows: a small amount of sample was placed in a gold cup. 

The temperature of the sample was controlled to a desired temperature before the 

preparation of sample replicas. The gold cup was then swiftly plunged into a liquid Freon that 

has been cooled with liquid nitrogen in advance. The frozen samples were fractured and 

replicated in a freeze-fracture apparatus BAF 400 (Bal-Tec, Balzer, Liechtenstein) at 133 K. 

Pt/C was deposited at an angle of 45o. The in-situ small-angle X-ray scattering (SAXS) 

experiment was performed at beamline 1W2A of BSRF (Beijing, China). The incident X-ray 

wavelength (λ) was chosen to be 0.154 nm by a triangle bending Si(111) monochromator. A 

two-dimensional Pilatus detector was used to record the two-dimensional scattering intensity 

distribution. All these 2D data were integrated into the 1D I(q) profiles as function of the 

magnitude of the scattering vector q (q = 4sin /, where 2 is the total scattering angle). 

The sample-to-detector distance was fixed to 1.6 m to cover a q-range of 0.25~4.00 nm-1.
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Fig. S1  Phase separation temperature (LCST) of [P4444][CF3COO] after mixing with different amounts of 

water. The two phases became homogeneous again when temperature was decreased down to a certain 

extent. This means that such phase change was reversibly induced only by a small temperature change.
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Fig. S2  Ternary phase diagram of [P4444][CF3COO]/H2O/Triton X-100 system at 40 °C (solid line with 

shadow) and 50 °C (dashed line). The two-phase region is larger at higher temperatures, in accordance with 

the results of the binary phase diagram of [P4444][CF3COO]/H2O system.
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Fig. S3  Ternary phase diagram of [P4444][CF3COO]/H2O/Triton X-100 system at 40 °C. The solid squares 

are on the line of [P4444][CF3COO]/H2O (1:4, w/w), while the hollow circles are on the line of H2O/Triton X-

100 (10:1, w/w).



Fig. S4  Sizes and size distributions of the [P4444][CF3COO]/H2O/Triton X-100 assembly (H2O/Triton X-100, 

10:1, w/w) at different R values (R = [P4444][CF3COO]/Triton X-100 molar ratio) at 40 °C. The droplet sizes of 

self-assemblies increased from 12.7, 21.3, 38.5, 74.8, to 124.6 nm with increasing R from 4.54, 5.95, 7.15, 

8.10, to 8.52. Such a swelling phenomenon is characteristic of microemulsion, also suggesting the formation 

of [P4444][CF3COO]-in-H2O microemulsions at 40 °C.

   

Fig. S5  Sizes of the [P4444][CF3COO]/H2O/Triton X-100 assembly ([P4444][CF3COO]/H2O, 1:4, w/w) at 

different R values (R = [P4444][CF3COO]/Triton X-100 molar ratio) at 20 °C.



Fig. S6  Surface tension of [P4444][CF3COO] aqueous solution ([P4444][CF3COO]/H2O, 1:4, w/w) as a function 

of Triton X-100 concentration at 20 °C.

(a)                                    (b)

Fig. S7  FF-TEM images of [P4444][CF3COO]/H2O/Triton X-100 (1:4:0.3, w/w)  aggregates at (a) 20 °C and (b) 

40 °C.

Table S1  Rg and Dmax of the particle at 25, 35, 45, and 50 °C calculated from SAXS.

25 °C 35 °C 45 °C 50 °C

Rg (nm) 1.9 3.5 4.9 5.1

Dmax (nm) 5.5 12.1 16.8 18.1
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