Electronic Supplementary Information (ESI) for

A hexangular ring-core NiCo₂O₄ porous nanosheet/NiO nanoparticle composite as an advanced anode material for LIBs and catalyst for CO oxidation applications

Yanyan He, Liqiang Xu*, Yanjun Zhai, Aihua Li and Xiaoxia Chen

Experimental Section.

Material synthesis

In a typical procedure, 0.01 mol Ni(CH₃COO)₂·4H₂O and 0.01 mol Co (CH₃COO)₂·4H₂O were dissolved in 20 ml distilled water, the mixture was stirred for 30 min and then 20 ml of NaOH (0.16 g) aqueous solution was added drop wise. Finally the solution was transferred to a Teflon-lined stainless-steel autoclave. After it was stirred vigorously for 1h, the autoclave was heated at 180 °C and maintained for 12 h. The resulting precipitates were collected by filtration, washed with distilled water and ethanol for three times, and dried at 60 °C. To obtain the final products, the as-prepared products were calcined in air at 300, 350, 400, 500 °C for 2 h with a heating rate of 1°C/min, respectively.

Structural characterization

X-ray powder diffraction (XRD) patterns of the as-obtained products were achieved on a Bruker D8 advanced X-ray diffractometer ($Cu_{k\alpha}$ radiation, λ =1.5418 Å). The morphologies and sizes of the samples were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) measurements which were carried out using a JEM-2100 microscope, and a JSM-7600F field-emission microscope. The high resolution images and STEM images were observed on a high resolution transmission electron microscope (HRTEM, JEOL-2011) operating at 200 kV. The BET surface area (SBET) and Barrett-Joyner-Halenda (BJH) pore size distribution (PSD) were measured on a QuadraSorb SI surface area analyzer (version 5.06).

Electrochemical measurements

The electrochemical performances of the samples were tested in 2032-coin cells. The working electrodes consist of active materials (60 wt. %), carbon black (30 wt. %), and carboxymethyl cellulose III (CMC) (10 wt. %). Distilled water was used as the solvent. The mixed slurry was then spread onto a copper foil current collector and dried under vacuum at 60°C for 12 h, and then the copper foil was roll-pressed and cut into discs. The final loading density of the active materials was approximately 1-1.5 mg cm⁻². Lithium discs with the diameter of 15 mm were used as the counter electrode. The electrolyte is the solution of 1M LiPF₆ dissolved in ethylene carbonate/dimethyl carbonate/diethyl carbonate (EC/DMC/DEC, 1:1:1 by volume). The cells were assembled in an argon-filled glove box. Galvanostatic discharge–charge cycling was performed on Land-CT2001A battery cyclers at 25 °C and cyclic voltammetry (CV) profile was measured at LK2005A Electrochemical Workstation in the range of 0.01–3V at a scanning rate of 0.1 mV s⁻¹.

CO Oxidation Catalysis

In the catalytic experiments, the activity of the composite was measured using a continuous flow fixed bed micro-reactor, equipped by an electronically temperature programmed tube furnace at atmospheric pressure. The system was first purged with high purity N_2 gas (99.999 %), until the concentration of CO and CO₂ are about 0 ppm, and then a gas mixture of high-purity N_2

(99.999 %, flow rate 32 ml/min), high-purity CO/N_2 mixed gas (10% CO in N_2 , 99.999 %, flow rate 4 ml/min) and high-purity O_2 (99.995 %, flow rate 4 ml/min) were introduced into the reactor which contained 50 mg crushed the composites. The concentrations of CO and CO_2 were analyzed by an online infrared gas analyzer (Gasboard-3121, China Wuhan Cubic Co.) and the resolution of the concentrations is 10 ppm.

Fig. S1 TEM image of the product obtained after the hydrothermal reaction.

Fig. S2 Energy Dispersive Spectrum (EDS) analysis of the composite.

Fig. S3 Cycling performance and coulombic efficiency of the product obtained after the hydrothermal reaction at a current density of 100 mA g^{-1} (a), 500 mA g^{-1} (b), 1000 mA g^{-1} (c) and (d) Rate performance.

Fig. S4 Cycling performance and coulombic efficiency of the NiCo₂O₄/NiO composite at a current density of 100 mA g^{-1} (a), 500 mA g^{-1} (c), 1000 mA g^{-1} (d) and (b) Rate performance.

In addition, the electrochemical performance of the working electrodes which consist of active material (70 wt%), carbon black (20 wt%), and carboxymethyl cellulose III (CMC) (10 wt%) are shown in Fig. S4 (ESI[†]), and a comparison between a carbon black content of 20 wt% and 30 wt% showed that carbon black could increase the stability of the material. The NiCo₂O₄/Ni(OH)₂ nanoparticle composite showed good electrochemical performance which is shown in Fig. S3 (ESI[†]).

Fig. S5 Electrochemical impedance spectra for the $NiCo_2O_4/NiO$ composite cell before and after discharge–charge cycling for 10 cycles, 50 cycles, 100 cycles at the current density of 500 mA g^{-1} .

Fig. S6 TEM images of the cycled composite (350 $^{\circ}$ C) at a current density of 100 mA g⁻¹ after 50 cycles.

Fig. S7 Cycling performances of the products obtained at different temperature (300 °C, 350 °C, 400 °C, 500 °C) at a current density of 1000 mA g⁻¹.

Fig. S8 Randomly selected TEM images of one unit of the composite from the whole (350 °C) (a) before CO oxidation reaction and (b) after CO oxidation reaction.

Fig. S9 XRD patterns of the composite (350 °C) before CO oxidation reaction and after CO oxidation reaction.

Fig. S10 XRD patterns of (a) the product obtained after the hydrothermal reaction; (b) the products after the calcinations (350 $^{\circ}$ C).

Fig. S10 (a) shows the XRD pattern of the product obtained after the hydrothermal reaction and all the diffraction peaks could be indexed to hexagonal $Ni(OH)_2$ (JCPDS card no.14-0117) and cubic NiCo₂O₄ (JCPDS card no.20-0781). As shown in Fig. S10 (b), the cubic NiCo₂O₄ (JCPDS card no.20-0781) and cubic NiO (JCPDS card no.47-1049) are co-existed in the products after the calcinations process of 350 °C.

Fig. S11 TEM images of the composite obtained at different calcination temperatures: (a) 300 $^{\circ}C$, (b) 400 $^{\circ}C$, (c) 500 $^{\circ}C$.

Fig. S12 The CV curves (a);the charge–discharge curves at 200 mA g^{-1} (b); cycling performance and coulombic efficiency at 500 mA g^{-1} (c) and 1000 mA g^{-1} (d) of the composite (350 °C).

Fig. S12 (a) shows the cyclic voltammograms of the NiCo₂O₄/NiO composite for the 1st, 2nd, 3rd, 4th and 5th cycles at a scan rate of 0.1 mV s⁻¹ in the voltage window of 0.01–3 V Li/Li⁺. During the first reduction scan, an intense reduction peak around 0.75 V was observed, which may be assigned to the reduction of NiCo₂O₄ to metallic Ni and Co (eqn (1)). Meanwhile, the two oxidation peaks at around 1.5 V and 2.2 V correspond to the oxidation of NiO to Ni²⁺ (eqn (2)) and Co to Co³⁺ (eqn (3) and (4)). During the subsequent cycles, the reduction peak shifted to around 1.05 V and the oxidation peaks changed inconspicuously. The CV curves were similar after the first cycle, which suggested that the performance of the electrode is stable. The lithium intercalation and extraction in the reactions might be attributed to the process as follows:^{20, 21}

$$NiCo_2O_4 + 8Li^+ + 8e^- \rightarrow Ni + 2Co + 4Li_2O$$
(1)

$$Ni + Li_2O \leftrightarrow NiO + 2Li^+ + 2e^-$$
 (2)

$$\text{Co} + \text{Li}_2\text{O} \leftrightarrow \text{CoO} + 2\text{Li}^+ + 2\text{e}^-$$
 (3)

$$CoO + 4/3Li_2O \leftrightarrow 1/3Co_3O_4 + 8/3Li^+ + 8/3e^-$$
(4)

Electrode	Reversible	Current density	Cycle	Ref.
materials	capacity	(mA g ⁻¹)	number	
	$(mA h g^{-1})$		(n)	
NiCo ₂ O ₄ porous	816	100	70	1
nanoplates/RGO				
Fe ₂ O ₃ @NiCo ₂ O ₄	1079.6	100	100	2
porous				
nanocages				
NiCo ₂ O ₄	732.5	100	200	3
nanotubes				
decorated by Au				
nanoparticles				
NiCo ₂ O ₄ /C	751.8	40	50	4
nanocomposite				
Carbon-Coated	765	100	50	5
NiCo ₂ O ₄ @SnO ₂				
Mesoporous	1000	442	400	6
spinel NiCo ₂ O ₄				
NiCo ₂ O ₄	1198	200	30	7
mesoporous	705	800	500	
microspheres				
NiCo ₂ O ₄	884	500	100	8
nanoflakes	981	500	100	
nanobelts				
NiCo2O4 hollow	695	200	200	9
nanospheres				
NiCo2O4 hollow	1160	200	200	10
nanocubes				
NiCo ₂ O ₄	720	500	100	11
microflowers				
Our work	1567.3	100	50	
(hexangular ring-	894	200	200	
core NiCo ₂ O ₄	893	500	455	
porous	753	100	740	
nanosheet/NiO				
nanoparticle				
composite)				

Table S1 Comparisons between the hexangular ring-core $NiCo_2O_4$ porous nanosheet/NiO nanoparticle composite and previously reported $NiCo_2O_4$ and related nanocomposite.

Electrode materials	Reversible	Current density	Cycle	Ret
	capacity	(mA g ⁻¹)	number	
	(mA h g ⁻¹)		(n)	
Graphite	360	53.1	150	12
Porous carbon sphere	365	37.2	100	13
	250	372	100	
N-doped graphene /graphite	344.5	3720	1000	14
Si/C composite	600	100	100	15
Mesoporous Si nanorod	1038	200	170	16
TiO ₂ nanowires	292	50	1000	17
	189.8	50	2000	
Nano-Li ₄ Ti ₅ O ₁₂ /carbon nanotubes	~150	106.5	100	18
Hierarchical titanate microspheres	~230	50	100	19
Our work (hexangular ring-core	1567.3	100	50	
NiCo ₂ O ₄ porous nanosheet/NiO	894	200	200	
nanoparticle composite)	893	500	455	
	753	100	740	

Table	S2	Comparisons	between	the	hexangular	ring-core	NiCo ₂ O ₄	porous	nanosheet/NiO
nanoparticle composite and previously reported anode materials.									

rp					
Elem	Avg	Units	Stddev	%RSD	
Co 2286	4.145	ppm	.000	.0014	
Ni 2316	4.124	ppm	.001	.0.282	

Table S3 Inductively coupled plasma atomic emission spetrometry (ICP-AES) analysis of the composite.

In the composite, $NiCo_2O_4$ belongs to cubic system and isostructural to Co_3O_4 with spinel structure, According to the previous reports,^{22, 23} Co³⁺ is the active site of the CO oxidation ,the large amount of Co³⁺ cations provide sufficient sites for CO adsorption, which occurs easily. The reaction between the adsorbed CO and the nearby active oxygen species to form CO₂ might be the rate-determining step. Similarly, the NiO belongs to cubic system, Ni²⁺ is the active site of the CO oxide according to the previous report,²⁴ and the CO adsorbed to Ni-O reacting with the active oxygen species form CO₂.

References:

- 1 Y. J. Chen, M. Zhuo, J. W. Deng, Z. Xu, Q. H. Li and T. H. Wang, J. Mater. Chem. A, 2014, 2, 4449.
- 2 G. Huang, L. L. Zhang, F. F.Zhang and L. M. Wang, Nanoscale, 2014, 6, 5509.
- 3 J. Zhu, Z. Xu and B. A. Lu, Nano Energy, 2014, 7, 114.
- 4 Y. N. NuLi, P. Zhang, Z. P. Guo, H. K. Liu and J. Yang, Electrochem. Solid-State Lett., 2008, 11, A64.
- 5 G. X. Gao, H. B. Wu, S. J. Ding and X. L. Wang, Small, 2014, 4, 432.
- 6 H. S. Jadhav, R. S. Kalubarme, C. N. Park, J. Kim and C. J. Park, Nanoscale, 2014, 6, 10071.
- 7 J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju and Y. T. Qian, ACS Appl. Mat. Interfaces, 2013, 5, 981.
- 8 A. K. Mondal, D. W. Su, S. Q. Chen, X. Q. Xie, and G. X. Wang, ACS Appl. Mat. Interfaces, 2014, 6, 14827.
- 9 X. Y. Yao, C. Y. Zhao, J. H. Kong, D. Zhou and X. H. Lu, RSC Adv., 2014, 4, 37928.
- 10 H. Guo, L.X. Liu, T. T. Li, W. W. Chen, J. J. Liu, Y. Y. Guo and Y. C. Guo, *Nanoscale*, 2014, 6, 5491.
- 11 J. M. Xu, L. He, W. Xu, H. B. Tang, H. Liu, T. Han, C. J. Zhang and Y. H. Zhang, *Electrochim. Acta*, 2014, 145, 185.
- 12 H. Buqa, D. Goers, M. Holzapfel, M. E. Spahr and P. Novak, J. Electrochem. Soc., 2005, 152, A474.
- 13 V. Etacheri, C. W. Wang, M. J. O'Connell, C. K. Chan and V. G. Polet, J. Mater. Chem. A, 2015, 3, 9861.
- 14 G. H. Wu, R. Y. Li, Z. J. Li, Z. G. Gu and G. L. Wang, Electrochim. Acta, 2015, 171,156.
- 15 M. Li, X. H. Hou, Y. J. Sha, J. Wang, S. J. Hu, X. Liu and Z. P. Shao, J. Power Sources, 2014, 248,721.
- 16 Y. L. Zhou, X. L. Jiang, L. Chen, J. Yue, J. Yang and Y. T. Qian, *Electrochim. Acta*, 2014, 127, 252.
- 17 F. X. Wu, Z. X. Wang, X. H. Li and H. G. Guo, J. Mater. Chem., 2011, 21, 12675.
- 18 H. F. Ni and L. Z. Fan, J. Power Sources, 2012, 214, 195.
- 19 J. M. Li, W. Wan, F. Zhu, Q. Li, H. H. Zhou, J. J. Li and D. S. Xu, Chem. Commun., 2012, 48, 389.
- 20 Y. J. Zhai, H. Z. Mao, P. Liu, X. C. Ren, L. Q. Xu and Y. T. Qian, J. Mater. Chem. A, 2015, 3, 16142.
- 21. H. S. Jadhav, R. S. Kalubarme, C. N. Park, J. Kim and C. J. Park, Nanoscale, 2014, 6, 10071.
- 22 J. Jansson, J. Catal., 2000, 194, 55.
- 23 X. Xie, Y. Li, Z. Q. Liu, H. Masatake and W. J. Shen, *Nature*, 2009, 458, 746.
- 24 C. J. Tang, J. C. Li, X. J. Yao, J. F. Sun, Y. Cao, L. Zhang, F. Gao, Y. Deng and L. Dong, *Appl. Catal.*, *A*, 2015, **494**, 77.