Asymmetric synthesis of optically active methyl-2-benzamido-methyl-3-hydroxy-butyrate by robust short-chain alcohol dehydrogenases from Burkholderia gladioli

Xiang Chen, ${ }^{a, b}$ Zhi-Qiang Liu, ${ }^{a, b}$ Jian-Feng Huang, ${ }^{a, b}$ Chao-Ping Lin ${ }^{a, b}$ and Yu-Guo Zheng*a,b

${ }^{a}$ Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China. Fax: +86-571-

88320630; Tel: +86-571-88320630; E-mail: zhengyg@zjut.edu.cn
${ }^{b}$ Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang

University of Technology, Hangzhou 310014, China

Supporting information

Table of Contents

1. General S3
2. Identification of strain ZJB12126 S7
3. Preparation of recombinant enzymes S10
4. Sequence alignment of $B g A D H s$ with several known alcohol dehydrogenases S13
5. Enzyme assay S14
6. Synthesis of methyl 2-benzamido-methyl-3-oxobutyrate (BMOB) 29 S14
7. Synthesis of methyl-2-benzamido-methyl-3-hydroxy-butyrate (MBHB) S15
8. Screening of recombinant BgADHs for DYKAT of BMOB S16
9. Characterization of BgADHs S16
10. Effect of organic solvents on asymmetric synthesis of ($2 S, 3 R$)-MBHB using $B g A D H 2$ S21
11. Asymmetric synthesis of $(2 S, 3 R)$-MBHB using $B g A D H 2$ in single aqueous system S21
12. Asymmetric synthesis of $(2 S, 3 R)$-MBHB in aqueous-toluene biphasic system. S21
13. Substrate specificities of BgADHs S22
14. Analytical methods S23
15. Homology modeling and docking S24
16. Chiral GC chromatograms S26
17. Chiral HPLC chromatograms. S36
18. NMR spectra of BMOB and MBHB S49
19. References S55

1. General

Methyl 2-benzamido-methyl-3-oxobutyrate 29 and methyl-2-benzamido-methyl-3-hydroxybutyrate (MBHB) were synthesized according to a modified literature procedure. ${ }^{1}$ All the other chemicals were obtained from commercial suppliers, and used without further purification: N(hydroxymethyl)benzamide (98\%, Aldrich), phosphorus pentachloride (98\%, Aladdin), (Z)methyl 3-(pyrrolidin-1-yl)but-2-enoate (98\%, Aldrich), acetaldehyde 1 (98\%, Aladdin), butyraldehyde 2 (98%, Aladdin), benzaldehyde 3 (97%, Aladdin), 2,3-butanedione 4 (98%, Aladdin), 2-pentanone 5 (98%, Aladdin), 2-hexanone 6 (98%, Aladdin), cyclohexanone 7 (98%, Aladdin), 2-phenylcyclohexanone 8 (98\%, Aladdin), 4-piperidone 9 (98\%, Aladdin), acetophenone 10 (98%, Aladdin), (R)-1-phenylethanol (98%, Aladdin), 1-phenylethanol (98%, Aladdin), 4-methylacetophenone 11 (98\%, Aladdin), (R)-1-(4-methylphenyl)ethanol (96\%, Aladdin), 1-(4-methylphenyl)ethanol (96\%, Aldrich), 4-methoxyacetophenone 12 (98%, Aladdin), (R)-1-(4-methoxyphenyl)ethanol (98\%, Donggang Pharmaceutical Co., Ltd., China), 1-(4-methoxyphenyl)ethanol (98\%, Aldrich), 2-methoxy acetophenone 13 (98\%, Aladdin), (R)-1-(2-methoxyphenyl)ethanol (98\%, Donggang Pharmaceutical Co., Ltd., China), 1-(2methoxyphenyl)ethanol (98%, J\&K Chemical Co., Ltd.), 3,5-dimethoxyacetophenone 14 (98\%, Aldrich), (S)-1-(3,5-dimethoxyphenyl)ethanol (98\%, Donggang Pharmaceutical Co., Ltd., China), 1-(3,5-dimethoxyphenyl)ethanol (98\%, Donggang Pharmaceutical Co., Ltd., China), 4fluoroacetophenone 15 (98\%, Aladdin), (S)-1-(4-flourophenyl)ethanol (98\%, Aladdin), 1-(4flourophenyl)ethanol (98\%, Aldrich), 4-trifluoromethyl acetophenone 16 (98\%, Aladdin), (S)-1-(4-trifluoromethylphenyl)ethanol (98\%, J\&K Chemical Co., Ltd.), 1-(4trifluoromethylphenyl)ethanol (98\%, J\&K Chemical Co., Ltd.), 3,5-bis(trifluoromethyl)
acetophenone 17 (98%, Aladdin), (S)-1-[3,5-bis(trifluoromethyl)phenyl]ethanol (98\%, J\&K Chemical Co., Ltd.), 1-[3,5-bis(trifluoromethyl)phenyl]ethanol (98\%, Aladdin), 4nitroacetophenone 18 (98\%, Aladdin), (S)-1-(4-nitrophenyl)ethanol (98\%, Donggang Pharmaceutical Co., Ltd., China), 1-(4-nitrophenyl)ethanol (98\%, J\&K Chemical Co., Ltd.), 1,2-diphenyl ethanedione 19 (98%, Aladdin), benzoylformic acid 20 (98%, J\&K Chemical Co., Ltd.), (S)- α-hydroxy-benzeneacetic acid (98%, J\&K Chemical Co., Ltd.), (R)- α-hydroxybenzeneacetic acid (98\%, J\&K Chemical Co., Ltd.), 4-chloro-benzoylformic acid 21 (98\%, Donggang Pharmaceutical Co., Ltd., China), (S)-4-chloro- α-hydroxy-benzeneacetic acid (98\%, J\&K Chemical Co., Ltd.), (R)-4-chloro- α-hydroxy-benzeneacetic acid (98\%, J\&K Chemical Co., Ltd.), 4-hydroxy-benzoylformic acid 22 (98\%, Donggang Pharmaceutical Co., Ltd., China), (S)- $\alpha, 4$-dihydroxy-benzeneacetic acid (98%, J\&K Chemical Co., Ltd.), (R)- $\alpha, 4-$ dihydroxy-benzeneacetic acid (98\%, J\&K Chemical Co., Ltd.), ethyl acetoacetate 23 (98\%, Aladdin), ethyl 3-hydroxybutyrate (98\%, Aladdin), (R)-ethyl 3-hydroxybutyrate (98\%, Aladdin), t-butyl acetoacetate 24 (98%, Aladdin), t-butyl 3-hydroxybutyrate (98%, Donggang Pharmaceutical Co., Ltd., China), (S)-t-butyl 3-hydroxybutyrate (98\%, J\&K Chemical Co., Ltd.), ethyl 4-chloroacetoacetate 25 (98\%, Aldrich), ethyl (S)-4-chloro-3-hydroxybutyrate (98\%, Aladdin), ethyl-4-chloro-3-hydroxybutyrate (98\%, J\&K Chemical Co., Ltd.), ethyl 4bromoacetoacetate 26 (98\%, J\&K Chemical Co., Ltd.), ethyl (S)-4-bromo-3-hydroxybutyrate (98\%, J\&K Chemical Co., Ltd.), ethyl 4-bromo-3-hydroxybutyrate (98\%, Donggang Pharmaceutical Co., Ltd., China), ethyl 4,4,4-trifluoro-3-oxobutanoate 27 (98\%, Aldrich), ethyl (S)-4,4,4-trifluoro-3-hydroxyl butyrate (98\%, Donggang Pharmaceutical Co., Ltd., China), ethyl 4,4,4-trifluoro-3-hydroxyl butyrate (98%, J\&K Chemical Co., Ltd.), ethyl 4-phenyl-3-
oxopropanoate 28 (98%, J\&K Chemical Co., Ltd.), ethyl (S)-4-phenyl-3-hydroxybutyrate (98%, Donggang Pharmaceutical Co., Ltd., China), ethyl 4-phenyl-3-hydroxybutyrate (98\%, Donggang Pharmaceutical Co., Ltd., China), t-butyl 6-cyano-(5R)-hydroxyl-3-oxo hexanoate 30 (95\%, Donggang Pharmaceutical Co., Ltd., China), t-butyl 6-cyano-($3 R, 5 R$)-dihydroxylhexanoate (95%, Donggang Pharmaceutical Co., Ltd., China), t-butyl 6-cyano-(3S, 5R)-dihydroxyl-hexanoate (95\%, Donggang Pharmaceutical Co., Ltd., China), t-butyl 6-chloro-(5S)-hydroxyl-3-oxo hexanoate 31 (90\%, Donggang Pharmaceutical Co., Ltd., China), t-butyl 6-chloro-(3R, 5S)-dihydroxyl hexanoate (90\%, Donggang Pharmaceutical Co., Ltd., China), t butyl 6-chloro-(3S, 5S)-dihydroxyl hexanoate (90\%, Donggang Pharmaceutical Co., Ltd., China), 5-((4S)-2-oxo-4-phenyl(1,3-oxazolidin-3-yl))-1-(4-fluoro phenyl)pentane-1,5-dione 32 (95\%, Donggang Pharmaceutical Co., Ltd., China), (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxylpentanoyl]-4-phenyl-1,3-oxazolidin-2-one (95\%, Dong gang Pharmaceutical Co., Ltd., China), (4S)-3-[5-(4-fluorophenyl)-5-hydroxy pentanoyl]-4-phenyl-1,3-oxazolidin-2-one (95\%, Donggang Pharmaceutical Co., Ltd., China), (E)-2-[3-[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-3-oxopropyl]benzoate 33 (95\%, Donggang Pharma ceutical Co., Ltd., China), N,N-dimethyl-3-keto-3-(2-thienyl)-1- propanamine 34 (97\%, Donggang Pharmaceutical Co., Ltd., China), (S)-N,N-dimethyl-3- hydroxy-3-(2-thienyl)-1-propanamine (98\%, J\&K Chemical Co., Ltd.), N,N-dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamine (98\%, J\&K Chemical Co., Ltd.), sodium borohydride (99\%, Aldrich), acetic acid (99\%, Aldrich), dimethyl sulfoxide (DMSO) (99\%, Aldrich), dimethylformamide (DMF) (99\%, Aldrich), methanol (HPLC grade, Fisher), ethanol (HPLC grade, Fisher), acetone (99\%, Aldrich), isopropanol (HPLC grade, Fisher), n-butanol (99%, Aldrich), iso-butanol (99%, Aldrich),
tetrahydrofuran (THF) (99%, Aldrich), ethyl acetate (99%, Aldrich), butyl acetate $(99 \%$, Aldrich), iso-butyl acetate (99%, Aldrich), dichloromethane (99%, Aldrich), toluene $(99 \%$, Aldrich), xylene (99%, Aldrich), cyclohexane (98%, Aldrich), n-hexane (HPLC grade, Fisher), n-heptane (HPLC grade, Fisher), and iso-octane (99\%, Aldrich).

The CpSCR (GeneBank: GQ411433.1) was cloned from Candida parapsilosis previously discribed. ${ }^{2}$ The glucose dehydrogenase (GDH) was obtained from Exiguobacterium sibiricum 255-15 (GenBank: ACB59697.1). ${ }^{2 \mathrm{~b}}$ The plasmid pMD18-T (Takara, Otsu, Japan) and strain E. coli JM109 (Tiangen biotech Co., Ltd., Beijing, China) were used for cloning. The plasmid pET28a (+) (Novagen, Darmstadt, Germany) and strain E. coli BL21 (DE3) (Invitrogen, Karlsruhe, Germany) were chosen for recombinant expression.

NAD $(\mathrm{P}) \mathrm{H}$ and NADP^{+}(sodium salt; $>97 \%$ pure) were obtained from Roche (Karlsruhe, Germany). T4 DNA ligase, restriction enzymes, and PrimeSTAR ${ }^{\circledR}$ HS DNA polymerase were purchased from TaKaRa (Otsu, Japan). The Pfu DNA polymerase and Taq DNA polymerase were obtained from Biocolor (Shanghai, China). Antibiotics ampicillin (99\%), kanamycin (99\%) and IPTG (inducer, >99\%) were purchased from Sigma Aldrich. Genomic DNA was extracted from strain B. gladioli ZJB12126 using a FastDNA® Spin Kit for Soil (MPBio, Shanghai, China). The DNA fragments were amplified through polymerase chain reaction (PCR) on Thermocycler (Bio-Rad, Hercules, CA, USA). Plasmid isolation, gel extraction, and PCR purification (Axygen Scientific, Inc, USA) were performed according to the manufactures' instructions. All of the PCR constructs were verified through DNA sequencing (Applied Biosystems, Foster, CA, USA). Plasmids DNA were transformed into E. coli through heat shock method. ${ }^{3}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE III (1H NMR 500 MHz , 13C NMR 126 MHz). Absorption measurements were performed on a SpectraMax M5 microplate reader (Molecular Devices, CA) at 340 nm .

2. Identification of strain ZJB12126

Strain ZJB12126 was isolated from soil samples and exhibited active to convert BMOB to (2S, $3 R)$-MBHB $(>80 \% e e,>80 \% \mathrm{de})$. It was taxonomically characterized and identified using morphological, physiological, and biochemical tests. The carbon source utilization and the chemical substrates sensitivity were determined by a standardized micromethod employing the Biolog microstation (see Table S1 and Table S2). The phylogenetic tree based on 16S rDNA sequence of ZJB12126 (1525 bp) was constructed by the neighbor-joining method. As shown in Figure S1, it was closely clustered with Burkholderia gladioli BSR3 (GenBank accession no. NR_102847.1) and showed 99% sequence identity. Thus, it was identified as B. gladioli ZJB12126 and deposited in China Center for Type Culture Collection (CCTCC No: M 2012379) for further studies.

Table S1. Sensitivity of 23 chemical-substrates by ZJB12126 using Biolog GEN III Microplate.

NO.	chemical-substrate	ZJB12126	NO.	chemical-substrate	ZJB12126
0	Positive Control	+	12	Lincomycin	+
1	pH 6	+	13	Guanidine HCl	-
2	pH 5	+	14	Niaproof 4	+
3	$1 \% \mathrm{NaCl}$	+	15	Vancomycin	+
4	$4 \% \mathrm{NaCl}$	-	16	Tetrazolium Violet	+
5	$8 \% \mathrm{NaCl}$	-	17	Tetrazolium Blue	+
6	1% Sodium Lactate	+	18	Nalidixic Acid	-
7	Fusidic Acid	+	19	Lithium Chloride	-
8	D-Serine	-	20	Potassium Tellurite	-
9	Troleandomycin	+	21	Aztreonam	-
10	Rifamycin SV	+	22	Sodium Butyrate	-
11	Minocycline	-	23	Sodium Bromate	-

Notes: +, positive; -, negative; B, borderline

Table S2. Utilization of 71 carbon-substrates by ZJB12126 using Biolog GEN III Microplate.

NO.	carbon-substrate	ZJB12126	NO.	carbon-substrate	ZJB12126
0	Negative Control	-	36	Gelatin	-
1	Dextrin	-	37	Glycyl-L-Prolin	-
2	D-Maltose	-	38	L-Alanine	$+$
3	D-Trehalose	+	39	L-Arginine	+
4	D-Cellobiose	-	40	L-Aspartic	$+$
5	Gentiobiose	+	41	L-Glutamic Acid	$+$
6	Sucrose	-	42	L-Histidine	$+$
7	D-Turanose	-	43	L-Pyroglutamic Acid	$+$
8	Stachyose	-	44	L-Serine	+
9	D-Raffinose	-	45	Pectin	-
10	α-D-Lactose	-	46	D-Galacturonic Acid	-
11	D-Melibiose	-	47	L-Galactonic Acid Lactone	-
12	β-Methyl-D-Glucoside	-	48	D-Gluconic Acid	+
13	D-Salicin	-	49	D-Glucuronic Acid	B
14	N-Acetyl-D-Glucosamine	+	50	Glucuronamide	+
15	N-Acetyl- β-D-Mannosamine	-	51	Mucic Acid	+
16	N -Acetyl-D-Galactosamine	+	52	Quinic Acid	+
17	N-Acetyl Neuraminic Acid	-	53	D-Saccharic Acid	+
18	α-D-Glucose	+	54	p-Hydroxy-Phenylacetic Acid	-
19	D-Mannose	$+$	55	Methyl Pyruvate	+
20	D-Fructose	$+$	56	D-Lactic Acid Methyl Ester	-
21	D-Galactose	+	57	L-Lactic Acid	+
22	3-Methyl Glucose	-	58	Citric Acid	$+$
23	D-Fucose	$+$	59	α-Keto-Glutaric Acid	-
24	L-Fucose	+	60	D-Malic Acid	+
25	L-Rhamnose	-	61	L-Malic Acid	+
26	Inosine	+	62	Bromo-Succinic Acid	B
27	D-Sorbitol	+	63	Tween 40	+
28	D-Mannitol	+	64	γ-Amino-Butryric Acid	+
29	D-Arabitol	+	65	α-Hydroxy-Butyric Acid	$+$
30	myo-Inositol	$+$	66	β-Hydroxy-D,L Butyric Acid	$+$
31	Glycerol	+	67	α-Keto-Butyric Acid	+
32	D-Glucose-6- PO_{4}	+	68	Acetoacetic Acid	B
33	D-Fructose-6-PO4	$+$	69	Propionic Acid	+
34	D-Aspartic Acid	+	70	Acetic Acid	+
35	D-Serine	$+$	71	Formic Acid	+

Notes: +, positive; -, negative; B, borderline

Figure S1. The phylogenetic tree based on 16 S rDNA, constructed by the neighbor-joining method, showing the relationship between strain ZJB12126 and representatives of some related taxa. Numbers in parentheses are accession numbers of published sequences. Bootstrap values (1,000 replications) are shown as percentages at branch points.

3. Preparation of recombinant enzymes

The bgadh genes were amplified from the genomic DNA of B. gladioli ZJB12126 using primers listed in Table S3. The target products were inserted into pMD18-T, and digested with restriction endonucleases (Xba I and Xho I for BgADH1,Nco I and Xho I for BgADH2 and BgADH5). Then, the fragments were ligated with pET28a (+) and transformed into E. coli BL21 (DE3). Single colonies were cultured in LB/Kanamycin (50 $\mu \mathrm{g} \mathrm{mL}$ - ${ }^{-1}$) at $37^{\circ} \mathrm{C}$ and 150 rpm until OD_{600} was between 0.6 and 0.8 , and induced with IPTG $(0.1 \mathrm{mM})$ at $28^{\circ} \mathrm{C}$ for 8 h . Since the recombinant enzymes were expressed as His $_{6}$-tagged proteins in E. coli, one-step purification was adopted on metal chelate affinity chromatography. ${ }^{4}$ The protein expression
and purification were checked on sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) (Figure S2). The molecular mass of the native enzymes were determined on a Discovery BIO GFC $150(300 \times 7.8 \mathrm{~mm}, 3 \mu \mathrm{~m})$ column (Sigma-Aldrich, USA) equilibrated in 150 mM phosphate (pH 7.0). Protein concentrations were determined using Bradford reagents (Bio-Rad) with bovine serum albumin (BSA) as a standard. Purified enzymes were used in all of the experiments in this study.

Table S3. Primers for PCR amplification.

Primers	Oligonucleotide sequences
BgADH1	BgADH1-F: 5'-tctagaATGGGTCGTTCGATCAATCTGGAAGG-3'
	BgADH1-R: 5'-ctcgagTGCGAGCCCGAATCCGTCGTCG-3'
BgADH2	BgADH2-F: 5'-ccatggGCAAGCGGCTGGAAGGCAAGG-3'
	BgADH2-R: 5'-ctcgagGACCTGGGCCTGGCCGCCG-3'
BgADH5	BgADH5-F: 5'-ccatggCAGACGTCAACAGCCTGTTC-3'
	BgADH5-R: 5'-ctcgagGACCGTGCTGGTGAGGCC-3'

(a)

Figure S2. (a) The SDS-PAGE analysis of the overexpression of $B g A D H s$ and $C p S C R$. The proteins were separated on a 12% SDS-polyacrylamide gel and stained with Coomassie Brilliant Blue G-250. Lane 1, molecular mass standard; Lane 2, E. coli BL21(DE3)/pET28a; Lane 3, BgADH1; Lane 4, condon optimized BgADH2; Lane 5, CpSCR; Lane 6, BgADH5; Lane 7, molecular mass standard; Lane 8, unoptimized BgADH2. (b) The SDS-PAGE analysis of purified BgADHs. Lane 1, molecular weight mark; Lane 2, the purified $B g A D H 1$; Lane 3, the purified $B g A D H 2$; Lane 4, the purified BgADH5.

In order to improve the expression level of BgADH 2 , condon optimization was adopted according to the codon bias in E. coli (http://www.kazusa.or.jp/codon/), in which Arg codons (AGA, CGA), Leu codon (CUA), Ile codon (AUA), Gly codon (GGA), and Pro codon (CCC) are considered as the rare codons. ${ }^{5}$ The codon optimized BgADH2 was designed and five rare codons were replaced with the synonymous ones used at the highest frequency, in detail, two CGGs, GGG/CCC, and ACT were substituted for CGCs, GGC/CCG, and ACC, respectively. The pET28a-bgadh2 was employed as the template and one-step mutagenesis reaction protocol was performed using PrimeSTAR ${ }^{\circledR}$ HS DNA polymerase. The oligonucleotide primers (with mutation codon underlined) are summarized in Table S4. The result was shown in Figure S2.

Table S4. Primers designed for the codon optimization and site-directed mutagensis of $B g A D H 2$.

Primers	Oligonucleotide sequences
BgADH2-F4	5'-GGCAGCCATATGGGCAAGCGCCTGGAAGGCAAGGTGGCA-3'
BgADH2-R4	5'-TGCCACCTTGCCTTCCAGGCGCTTGCCCATATGGCTGCC-3'
BgADH2-F18	5'-GTAACGGGCGGCACGAGCGGGATCGGCCTGGCCACCGCG-3'
BgADH2-R18	5'- CGCGGTGGCCAGGCCGATCCCGCTCGTGCCGCCCGTTAC-3'
BgADH2-F81	5'-ATCCGCGCCACCGAAGGCCGCCTCGACGTGCTGTTCACC-3'
BgADH2-R81	5’-GGTGAACAGCACGTCGAGGCGGCCTTCGGTGGCGCGGAT-3’
BgADH2-F119	5’-GTGAAGGCGGTGGTGTTCACCGTGCAGAAGGCCCTGCCG-3’
BgADH2-R119	5’-CGGCAGGGCCTTCTGCACGGTGAACACCACCGCCTTCAC-3'
BgADH2-F180	5’-CGCGTCAACGTGGTGAGCCCGGGCTCGACGCGCACCATC-3'
BgADH2-R180	5'-GATGGTGCGCGTCGAGCCCGGGCTCACCACGTTGACGCG-3'
S138A-F	5'-GATCATCCTGAACGGCGCGATCGCGGGCTCGACG-3'
S138A-R	5'-CGTCGAGCCCGCGATCGCGCCGTTCAGGATGATC-3'
Y151A-F	5'-CAGGCCTTCAGCATCGCGGGCGCCTCGAAGGCCG-3'
Y151A-R	5'-CGGCCTTCGAGGCGCCCGCGATGCTGAAGGCCTG-3'

To support the speculated statements about the molecular basis of BgADH2 toward BMOB, site-directed mutagenesis was adopted using one-step mutagenesis reaction protocol as well. The oligonucleotide primers (with mutation codon underlined) are also summarized in Table S4.

4. Sequence alignment of BgADHs with several known alcohol dehydrogenases

Figure S3. Multiple sequence alignments of LbADH from Lactobacillus brevis (GeneBank: CAD66648.1), CpSCR from Candida parapsilosis (GeneBank: GQ411433.1), Rhizobium etli alcohol dehydrogenase (PDB: 4FGS), Ralstonia sp. alcohol dehydrogenases (PDB: 4BMS, 4BMN, and 4I5E), BgADH1 (GeneBank: YP_004360366.1), BgADH2 (GeneBank: YP_004348055.1), and BgADH5 (GeneBank: YP_004349253.1).

The cofactor-binding motifs in the SDRs, TGXXXGXG, NNAG, and PG, are highlighted in orange and triangle while the residues of the catalytic tetrad ($\mathrm{N}, \mathrm{S}, \mathrm{Y}$, and K) are highlighted in green.

5. Enzyme assay

Specific activities were assayed spectrophotometrically by observing the depletion of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ at 340 nm . One unit of enzyme activity was defined as $1 \mu \mathrm{~mol}$ of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$
consumed per minute under the assay conditions. Each assay contained substrate (40 mM) and NAD(P)H (0.4 mM). Hydrophobic substrates were dissolved in DMSO prior to dilution into buffer to give a final DMSO concentration of $5 \%(\mathrm{v} / \mathrm{v})$. Unless otherwise stated, phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$) was used. Blank reading of the non-specific decomposition of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ was use as the appropriate correction.

6. Synthesis of methyl 2-benzamido-methyl-3-oxobutyrate (BMOB) 29

N-(chloromethyl)benzamide: To a mixture of N -(hydroxymethyl)benzamide ($15.1 \mathrm{~g}, 0.1 \mathrm{~mol}$) and dried ether solution $(40 \mathrm{~mL})$ cooled at $-5^{\circ} \mathrm{C}$, phosphorus pentachloride ($20.8 \mathrm{~g}, 0.1 \mathrm{~mol}$) was slowly added with stirring. The addition rate of phosphorus pentachloride was maintained in such a way that the reaction temperature does not exceed $5^{\circ} \mathrm{C}$ and the addition time was about 1 h . Upon complete addition, the reaction temperature was raised to ambient temperature and stirred for further 1.5 h . The product was collected by filtration and used for the next synthetic step without further purification ($14.5 \mathrm{~g}, 85 \%$).

Methyl 2-benzamido-methyl-3-oxobutanoate (BMOB): A DMF solution of (Z)-methyl 3-(pyrrolidin-1-yl)but-2-enoate ($14.5 \mathrm{~g}, 0.085 \mathrm{~mol}$) was cooled at $0{ }^{\circ} \mathrm{C}$ followed by the slowly addition of N -(chloromethyl)benzamide ($14.5 \mathrm{~g}, 0.085 \mathrm{~mol}$) with stirring. After complete addition, the reaction temperature was raised to $30^{\circ} \mathrm{C}$ for additional 1 h . The reaction mixture was transferred in water (200 mL) and the precipitation was filtrated. The crude product was purified by flash chromatography on a silica gel conlumn (ethyl acetate/petroleum ether $=3: 1$, $\left.R_{f}=0.5\right)$, affording $15 \mathrm{~g}(71 \%)$ of BMOB as white powder. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=8.63(\mathrm{~m}, \mathrm{NH}-1 \mathrm{H}), 7.81(\mathrm{~m}, \mathrm{Ph}-2,6-2 \mathrm{H}), 7.52(\mathrm{~m}, \mathrm{Ph}-3,4,5-3 \mathrm{H}), 4.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{C}-2-1 \mathrm{H})$,
$3.70\left(\mathrm{~m}, \mathrm{OCH}_{3}-3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-2 \mathrm{H}\right)$, and $2.24(\mathrm{~s}, \mathrm{C}-4-3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=202.10$ ($\mathrm{s}, \mathrm{C}-3$), 168.63 ($\mathrm{s}, \mathrm{C}-\mathrm{COO}$), 166.63 ($\mathrm{s}, \mathrm{C}-\mathrm{CONH}$), 134.02 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}-1$), 131.28 ($\mathrm{s}, \mathrm{C}-$ Ph-4), 128.26 (s, C-Ph-3,5), 127.14 (s, C-Ph-2,6), 58.10 (s, C-2), 52.33 ($\mathrm{s}, \mathrm{C}-\mathrm{OCH}_{3}$), 37.88 (d, $J=21.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{CH}_{2}$), and 29.27 ($\mathrm{s}, \mathrm{C}-4$).

7. Synthesis of methyl-2-benzamido-methyl-3-hydroxy-butyrate (MBHB)

Methyl-2-benzamido-methyl-3-hydroxy-butyrate (MBHB) was obtained by non-stereoselective reduction with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ from BMOB: A methanol solution of BMOB (15 $\mathrm{g}, 0.06 \mathrm{~mol})$ in dried three-neck flask $(250 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and sodium borohydride $(0.95 \mathrm{~g}, 0.025 \mathrm{~mol})$ was slowly added with stirring. Then, the reaction temperature was raised to room temperature for 2 h . After complete reaction, the pH of reaction mixture was adjusted to $5-6$ with 10% acetic acid/methanol solution and the mixture was extracted twice with ethyl acetate. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed by evaporation. The crude product was purified by flash chromatography on a silica gel conlumn (ethyl acetate/petroleum ether $=3: 1, R_{f}=0.28$ and 0.32), offering $10 \mathrm{~g}(66.7 \%)$ of MBHB as oily liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=8.51(\mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{NH}-1 \mathrm{H}), 7.80(\mathrm{~m}, \mathrm{Ph}-2,6-2 \mathrm{H}$), 7.52 (m, Ph-4-1H), 7.46 (m, Ph-3,5-2H), 4.88 (d, $J=5.5 \mathrm{~Hz}, \mathrm{C}-3-1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.3 \mathrm{~Hz}, \mathrm{C}-2-$ $1 \mathrm{H}), 3.58\left(\mathrm{~s}, \mathrm{OCH}_{3}-3 \mathrm{H}\right), 3.45\left(\mathrm{~m}, \mathrm{~N}^{2} \mathrm{CH}_{2}-2 \mathrm{H}\right), 2.72(\mathrm{dt}, J=8.4 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H})$, and $1.16(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, \mathrm{C}-4-3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=172.88$ (s, C-COO), 166.46 (s, C-CONH), 134.43 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}-1$), 131.11 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}-4$), 128.23 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}-3,5$), 127.13 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}-2,6$), 65.83 ($\mathrm{s}, \mathrm{C}-$ 2), $52.98(\mathrm{~s}, \mathrm{C}-3), 51.19\left(\mathrm{~s}, \mathrm{C}-\mathrm{OCH}_{3}\right), 38.44\left(\mathrm{~m}, \mathrm{C}-\mathrm{CH}_{2}\right)$, and $21.29(\mathrm{~s}, \mathrm{C}-4)$.

The four isomers of MBHB were collected using semi-preparative HPLC in our laboratory. The purities of $(2 S, 3 R)$-MBHB, $(2 R, 3 R)$-MBHB, $(2 R, 3 S)$-MBHB and $(2 S, 3 S)$-MBHB were $97.8 \%, 96.7 \%, 96.9 \%$, and 96.4%, respectively. ${ }^{6}$

8. Screening of recombinant BgADHs for DYKAT of BMOB

Each reaction mixture was comprised of phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$), BMOB 29 (40 $\mathrm{mM}, \mathrm{DMSO}, 5 \% \mathrm{v} / \mathrm{v})$, $\mathrm{NADP}^{+}(0.4 \mathrm{mM})$, glucose $(5 \%, \mathrm{w} / \mathrm{v}), \mathrm{GDH}\left(0.1 \mathrm{mg} \mathrm{mL}^{-1}\right)$, and purified enzyme $\left(0.1 \mathrm{mg} \mathrm{mL}^{-1}\right)$ in a total volumn of 1 mL . The reaction proceeded at $30{ }^{\circ} \mathrm{C}$ for 16 h . Reaction mixture without recombinant enzyme was used as the control. Aliquot of biotransformation solution ($100 \mu \mathrm{~L}$) was withdrawn, extracted twice with ethyl acetate (200 $\mu \mathrm{L}$), and analyzed by HPLC.

9. Characterization of $\boldsymbol{B g} \mathbf{A D H s}$

Optimal pH . Since the environmental pH affect the enzymatic activity, different pH values were tested in disodium hydrogen phosphate-citrate ($100 \mathrm{mM}, \mathrm{pH} 3.5,4.0,4.5,5.0,5.5,6.0$, 6.5 , and 7.0), potassium phosphate ($100 \mathrm{mM}, \mathrm{pH} 6.0,6.5,7.0,7.5$, and 8.0), Tris- HCl buffer (100 mM, pH 7.5, 8.0, 8.5, and 9.0), and Gly-NaOH buffer (100 mM, pH 9.0, 9.5, 10.0, and 10.5). The results were listed in Figure S4-S6.

Figure S4. Effect of pH on the specific activity of the purified BgADH 1 .

Figure S5. Effect of pH on the specific activity of the purified BgADH 2 .

Figure S6. Effect of pH on the specific activity of the purified BgADH 5 .

Optimal temperature and thermostabiliy. The optimal temperatures of BgADHs were studied by assaying enzyme activities at temperatures ranging from $25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in phosphate
buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$). To evaluate the thermostability of BgADHs , purified enzymes were diluted to $0.5 \mathrm{mg} \mathrm{mL}^{-1}$ in phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$) and incubated at temperatures ranging from $4{ }^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. Samples were withdrawn per hour and the residual activities were detected under the standard condition. The results were shown in Figure S7-S9.
(a)

(b)

Figure S7. Effect of temperature on the specific activity (a) and stability (b) of the purified BgADH1.
(a)

(b)

Figure S8. Effect of temperature on the specific activity (a) and stability (b) of the purified BgADH2.

Figure S9. Effect of temperature on the specific activity (a) and stability (b) of the purified BgADH5.

Effects of metal ions and chemical additives. To investigate the effects of metal ions and chemical additives on the activities of BgADHs , the initial activities were tested at $30^{\circ} \mathrm{C}$ in the presence of various metal ions $\left(\mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{+}, \mathrm{Fe}^{3+}, \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Mg}^{2+}\right.$, Ag^{+}, and Hg^{2+}), EDTA- Na_{2}, Triton-X100, and Tween $80(2 \mathrm{mM})$. The result was summarized in Table S5.

Kinetic parameters. All assays were carried out at $30^{\circ} \mathrm{C}$, and, unless otherwise stated, in phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$). Using BMOB as the substrate, multiple measurements were done under conditions where BMOB was held at constant concentration (40 mM) and NADH or NADPH concentrations varied from 0.04 to 1.6 mM or 0.01 to 0.4 mM . Additionally, multiple experiments with different BMOB concentrations ranged from 0.04 to 40 mM were performed in the presence of constant NADPH (0.4 mM). The kinetic parameters were calculated by nonlinear regression to the Michaelis-Menten equation aided by Origin software (OriginLab Corporation, Northampton, MA). Unless otherwise stated, estimation errors of kinetic parameters were $<20 \%$. The result was listed in Table S6.

Table S5. Effect of metal ions and chemical agents on the activities of BgADHs. ${ }^{\text {a }}$

Reagent	Concentration	Relative activity (\%)		
		BgADH1	BgADH2	BgADH5
Control	-	100 ± 2.5	100 ± 2.1	100 ± 2.5
Fe^{2+}	2 mM	86 ± 3.7	68 ± 1.5	98 ± 1.6
Ni^{2+}	2 mM	72 ± 1.5	60 ± 3.2	100 ± 2.1
Cu^{+}	2 mM	25 ± 2.1	21 ± 1.9	37 ± 0.9
Fe^{3+}	2 mM	55 ± 0.9	13 ± 1.5	81 ± 0.6

Ca^{2+}	2 mM	76 ± 2.1	80 ± 6.2	95 ± 1.5
Ba^{2+}	2 mM	85 ± 2.4	70 ± 5.3	97 ± 2.6
Cu^{2+}	2 mM	63 ± 3.2	14 ± 2.2	93 ± 2.4
Mn^{2+}	2 mM	55 ± 2.0	55 ± 2.3	81 ± 3.1
Zn^{2+}	2 mM	120 ± 2.6	139 ± 5.2	98 ± 3.6
Co^{2+}	2 mM	30 ± 1.9	11 ± 1.2	39 ± 2.0
Mg^{2+}	2 mM	124 ± 5.5	128 ± 2.7	98 ± 3.1
Ag^{+}	2 mM	27 ± 1.5	17 ± 1.2	29 ± 1.5
Hg^{2+}	2 mM	5 ± 0.6	2 ± 0.1	7 ± 0.9
$\mathrm{EDTA}^{2+} \mathrm{Na}_{2}$	2 mM	102 ± 2.4	105 ± 3.2	99 ± 1.8
Triton-X100	2 mM	100 ± 2.6	105 ± 3.8	97 ± 2.5
Tween 80	2 mM	106 ± 6.9	110 ± 2.5	99 ± 2.3

${ }^{\text {a }}$ Enzyme activities were determined under standard assay conditions after incubation with metal ions and chemical agents at $30^{\circ} \mathrm{C}$ for 30 min . The activity in the absence of metal ions and chemical agents was recorded as 100%.

Table S6. Kinetic parameters for the DYKAT of BMOB by $B g A D H 1, B g A D H 2, B g A D H 5$, and $C p S C R$.

Enzyme	$K_{\mathrm{m}}(\mathrm{mM})$		$k_{\text {cat BMOB }}\left(\mathrm{s}^{-1}\right)$	$\begin{aligned} & k_{\mathrm{cat} /} / K_{\mathrm{m} \text { BMOB }} \\ & \left(\mathrm{s}^{-1} \cdot \mathrm{mM}^{-1}\right) \end{aligned}$
	NAD(P) H	BMOB		
$B g A D H 1{ }^{\text {a }}$	0.083	1.47	8.57	5.83
$B g A D H 1{ }^{\text {b }}$	0.234	-	-	-
$B g A D H 2{ }^{\text {a }}$	0.043	2.30	29.9	12.3
$B g A D H 2{ }^{\text {b }}$	0.96	-	-	-
$B g A D H 5{ }^{\text {a }}$	0.13	3.37	9.47	2.81
$B g A D H 5{ }^{\text {b }}$	0.61	-	-	-
CpSCR ${ }^{\text {a }}$	-	2.22	22.2	10.0

${ }^{\mathrm{a}}$ NADPH. ${ }^{\mathrm{b}}$ NADH. Reaction conditions: BMOB (40 mM , DMSO, $5 \% \mathrm{v} / \mathrm{v}$), purified enzyme ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$), NADH (0.04 to 1.6 mM) or NADPH (0.01 to 0.4 mM), pH 6.5, and $30^{\circ} \mathrm{C}$ toward NAD(P)H; BMOB (0.04 to $40 \mathrm{mM}, \mathrm{DMSO}, 5 \% \mathrm{v} / \mathrm{v}$), enzyme ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$), NADPH (0.4 mM), pH 6.5 , and $30^{\circ} \mathrm{C}$ toward BMOB.

10. Effect of organic solvents on asymmetric synthesis of (2S, 3R)-MBHB using BgADH2

The influence of organic solvents on the activity of BgADH2 was assessed using BMOB as substrate under the enzyme assay protocol in the presence of water-miscible $(25 \%, \mathrm{v} / \mathrm{v}$, dimethyl sulfoxide, dimethylformamide, methanol, ethanol, acetone, iso-propanol, n-butanol, and iso-butanol) and water-immiscible solvents ($50 \%, \mathrm{v} / \mathrm{v}$, tetrahydrofuran, ethyl acetate, butyl acetate, iso-butyl acetate, dichloromethane, toluene, xylene, cyclohexane, n-hexane, n-heptane,
and iso-octane). The effect of organic solvents on the stereo-selectivity of BgADH2 in the asymmetric synthesis of ($2 S, 3 R$)-MBHB was investigated by adding BMOB (40 mM , DMSO, $5 \% \mathrm{v} / \mathrm{v})$, glucose $(5 \%, \mathrm{w} / \mathrm{v})$, $\mathrm{NADP}^{+}(0.4 \mathrm{mM})$, purified $\operatorname{BgADH} 2\left(0.1 \mathrm{mg} \mathrm{mL}^{-1}\right)$, and GDH ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$) at $35^{\circ} \mathrm{C}$ for 8 h .

11. Asymmetric synthesis of (2S, 3R)-MBHB using BgADH2 in single aqueous system

Biotransformation reactions were performed with a certain concentration of BMOB (5-140 mM , DMSO, $10 \% \mathrm{v} / \mathrm{v})$, glucose $(5 \%, \mathrm{w} / \mathrm{v}), \mathrm{NADP}^{+}(0.4 \mathrm{mM})$, purified BgADH2 $\left(0.1 \mathrm{mg} \mathrm{mL}^{-1}\right)$, and GDH ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$) in 20 mL phosphate buffer $(100 \mathrm{mM}, \mathrm{pH} 6.5)$ at $35^{\circ} \mathrm{C}$ for 8 h . The residual was extracted twice with ethyl acetate, and analyzed by HPLC.

12. Asymmetric synthesis of ($2 S, 3 R$)-MBHB in aqueous-toluene biphasic system

Reactions were performed with a certain concentration of BMOB (5-140 mM, DMSO, 10\% $\mathrm{v} / \mathrm{v})$, $\mathrm{NADP}^{+}(0.4 \mathrm{mM})$, glucose $\left(5 \%\right.$, w/v), purified $\operatorname{BgADH} 2\left(0.1 \mathrm{mg} \mathrm{mL}^{-1}\right)$, and GDH (0.1 $\left.\mathrm{mg} \mathrm{mL}{ }^{-1}\right)$ in 10 mL phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$) mixed with an equal volume of toluene at $35{ }^{\circ} \mathrm{C}$ for 8 h . After reaction, the two layers were separated and the aqueous layer was extracted twice with ethyl acetate. The extracted layers were combined with the original organic layer, and subsequently analyzed by HPLC.

Time course of ($2 S, 3 R$)-MBHB production using BgADH2 was achieved by adding BMOB (60 mM , DMSO, $5 \% \mathrm{v} / \mathrm{v}$), NADP $^{+}(0.4 \mathrm{mM})$, glucose $(5 \%$, w/v), purified BgADH2 ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$), and GDH $\left(0.1 \mathrm{mg} \mathrm{mL}^{-1}\right)$ in 10 mL phosphate buffer $(100 \mathrm{mM}, \mathrm{pH} 6.5)$ mixed
with an equal volume of toluene at $35^{\circ} \mathrm{C}$ for 8 h . Aliquot of mixture $(100 \mu \mathrm{~L})$ in the organic layer was removed at predetermined times and analyzed by HPLC. The conversion, ee and de values were calculated as previously described. ${ }^{6}{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.50(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, \mathrm{NH}-1 \mathrm{H}), 7.80$ (m, Ph-2,6-2H), 7.52 (m, Ph-4-1H), 7.46 (m, Ph-3,5-2H), 4.99 (d, $J=5.5 \mathrm{~Hz}, \mathrm{C}-3-1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.3 \mathrm{~Hz}, \mathrm{C}-2-1 \mathrm{H}), 3.64\left(\mathrm{~s}, \mathrm{OCH}_{3}-3 \mathrm{H}\right), 3.34\left(\mathrm{~m}, \mathrm{~N}-\mathrm{CH}_{2}-2 \mathrm{H}\right)$, $2.67(\mathrm{dt}, J=8.4 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H})$, and $1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, \mathrm{C}-4-3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}): $\delta=172.83$ ($\mathrm{s}, \mathrm{C}-\mathrm{COO}$), 166.42 ($\mathrm{s}, \mathrm{C}-\mathrm{CONH}$), 134.41 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}-1$), 131.08 (s, C-Ph-4), 128.21 (s , C-Ph-3,5), 127.10 (s, C-Ph-2,6), 65.80 (s, C-2), 52.95 (s, C-3), 51.17 (s, C-OCH3), 38.40 (m, $\mathrm{C}-\mathrm{CH}_{2}$), and 21.26 (s, C-4).

13. Substrate specificities of BgADHs

Each reaction mixture contained phosphate buffer ($100 \mathrm{mM}, \mathrm{pH} 6.5$), substrate $(40 \mathrm{mM})$, $\operatorname{NADP}^{+}(0.4 \mathrm{mM})$, glucose $(5 \%, \mathrm{w} / \mathrm{v})$, GDH ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$), and purified enzyme ($0.1 \mathrm{mg} \mathrm{mL}^{-1}$) in a total volumn of 1 mL and proceeded at $30^{\circ} \mathrm{C}$ for 16 h . Reaction mixture without recombinant enzyme was used as the control. Hydrophobic substrates were dissolved in DMSO prior to dilution into buffer to give a final DMSO concentration of $5 \%(\mathrm{v} / \mathrm{v})$. After complete addition, biotransformation solution was extracted with ethyl acetate and analyzed by HPLC or GC. For substrates with hydrophilic groups (20, 21, and 22), the supernatant of reaction solution was detected directly by RP-HPLC.

14. Analytical methods

The $e e$ or $d e$ values of products from biotransformation were determined using GC-14C (Shimadu, Japan), Model LC-20AT (Shimadu, Japan), or Dionex UltiMate 3000 (Dionex, USA). The analysis conditions and retention times of substrates and each isomer for the corresponding bioproducts were summaried in Table S7.

Table S7. GC and HPLC analysis of the $e e$ or $d e$ values of chiral alcohols.

Product	Chiral column ${ }^{\text {a }}$	Conditions	Retention time (min)		
			substrate	(S)-P	(R)-P
P10	BGB-174	$110{ }^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}-1,160{ }^{\circ} \mathrm{C}$; Inc./dec. 240 ${ }^{\circ} \mathrm{C}$; helium	6.7	7.6	7.9
P11	BGB-174	$110{ }^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}, 160^{\circ} \mathrm{C}$ Inc./dec. 240 ${ }^{\circ} \mathrm{C}$; helium	7.8	8.8	9.2
P12	OJ-H	n-hexane/isopropanol (97:3, v/v); flow rate: $0.2 \mathrm{~mL} \mathrm{~min}^{-1} ; 254 \mathrm{~nm}$	9.1	18.9	20.2
P13	OJ-H	n-hexane/isopropanol (97:3, v/v); flow rate: $0.2 \mathrm{~mL} \mathrm{~min}^{-1} ; 254 \mathrm{~nm}$	10.3	19.4	21.2
P14	OJ-H	n-hexane/isopropanol (97:3, v/v); flow rate: $0.2 \mathrm{~mL} \mathrm{~min}^{-1} ; 254 \mathrm{~nm}$	13.3	25.0	41.7
P15	BGB-174	$140{ }^{\circ} \mathrm{C}$; Inc./dec. $240{ }^{\circ} \mathrm{C}$; helium	5.1	6.3	6.8
P16	BGB-174	$140^{\circ} \mathrm{C}$; Inc./dec. $240^{\circ} \mathrm{C}$; helium	3.5	5.8	6.1
P17	BGB-174	$140^{\circ} \mathrm{C}$; Inc./dec. $240{ }^{\circ} \mathrm{C}$; helium	3.6	6.1	6.3
P18	OJ-H	n-hexane/isopropanol (95:5); flow rate: $0.2 \mathrm{~mL} \mathrm{~min}^{-1} ; 254 \mathrm{~nm}$	9.6	11.4	12.1
P20	Chirobiotic ${ }^{\text {TM }} \mathrm{R}$	$0.5 \% \mathrm{AcOH}-\mathrm{CH}_{3} \mathrm{CN}(20: 80, \mathrm{v} / \mathrm{v})$; flow rate of $1.0 \mathrm{~mL} / \mathrm{min} ; 278 \mathrm{~nm}$	9.5	3.0	3.3
P21	Chirobiotic ${ }^{\text {TM }} \mathrm{R}$	$0.5 \% \mathrm{AcOH}-\mathrm{CH}_{3} \mathrm{CN}(20: 80, \mathrm{v} / \mathrm{v})$; flow rate of $1.0 \mathrm{~mL} / \mathrm{min} ; 215 \mathrm{~nm}$	7.6	3.4	3.6
P22	Chirobiotic ${ }^{\text {TM }} \mathrm{R}$	$0.5 \% \mathrm{AcOH}-\mathrm{CH}_{3} \mathrm{CN}(20: 80, \mathrm{v} / \mathrm{v})$; flow rate of $1.0 \mathrm{~mL} / \mathrm{min} ; 215 \mathrm{~nm}$	6.6	3.8	4.0
P23	BGB-174	$110{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}, 5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}, 160{ }^{\circ} \mathrm{C}$; Inc./dec. $240^{\circ} \mathrm{C}$; helium	10.8	24.4	23.9

Continued

Product	Chiral column ${ }^{\text {a }}$	Conditions	Retention time (min)		
			substrate	(S)-P	(R)-P
P24	BGB-174	$110{ }^{\circ} \mathrm{C}, 20$ Inc./dec. 240	6.2	19.3	18.9

P25	BGB-174	$110^{\circ} \mathrm{C}, 0.5^{\circ} \mathrm{C} \mathrm{min}-125^{\circ} \mathrm{C}$; Inc./dec. 240 ${ }^{\circ} \mathrm{C}$; helium	7.1	25.0	24.7
P26	BGB-174	$110^{\circ} \mathrm{C}, 25 \mathrm{~min}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}, 160^{\circ} \mathrm{C}, 2 \mathrm{~min}$; Inc./dec. $240^{\circ} \mathrm{C}$; helium	9.3	34.6	34.4
P27	BGB-174	$120{ }^{\circ} \mathrm{C}$; Inc./dec. $240{ }^{\circ} \mathrm{C}$; helium	3.8	7.2	6.8
P28	AD-H	n-hexane/isopropanol (95:5); flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$; 218 nm	4.9	8.1	7.9
P29	AY-H	n-hexane/ethanol (76:24); flow rate: 1.0 $\mathrm{mL} \min ^{-1} ; 254 \mathrm{~nm}$	9.8,11.0	$\begin{aligned} & 5.8 \text { for }(2 S, 3 R) \text {, } \\ & 6.7 \text { for }(2 R, 3 R) \end{aligned}$	$\begin{aligned} & 7.3 \text { for }(2 R, 3 S) \\ & 10.3 \text { for }(2 S, 3 S) \end{aligned}$
P30	ODS	acetonitrile/water ($1: 3, \mathrm{v} / \mathrm{v}$); flow rate: 1.0 $\mathrm{mL} \mathrm{min}^{-1} ; 220 \mathrm{~nm}$	11.4	10.3	9.8
P31	ODS	acetonitrile/water ($1: 3, \mathrm{v} / \mathrm{v}$); flow rate: 1.0 $\mathrm{mL} \mathrm{min}^{-1} ; 220 \mathrm{~nm}$	16.4	14.2	13.8
P32	OD-H	n-hexane/ethanol (80:20, v/v); flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; 215 \mathrm{~nm}$	22.0	19.7	17.2
P33	OD-H	n-hexane/isopropanol (80:20); flow rate: $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; 287 \mathrm{~nm}$	12.8	14.4	16.4
P34	OJ-H	n-heptane/ethanol/diethylamine(99:1:0.2, $\mathrm{v} / \mathrm{v})$; flow rate: $0.2 \mathrm{~mL} \mathrm{~min}{ }^{-1} ; 235 \mathrm{~nm}$	7.3	8.9	10.1

${ }^{\text {a }}$ BGB-174 (30 m $\times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$; BGB Analytik); Chiralcel OJ-H column ($2.1 \times 150 \mathrm{~mm}$; Daicel Chemical Ind. Ltd., Japan); Chirobiotic ${ }^{\text {TM }}$ R ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, Sigma, USA); Chiralpak AD-H column ($4.6 \times 150 \mathrm{~mm}$; Daicel Chemical Ind. Ltd., Japan); Hypersil ODS column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, Thermo, USA); Chiralpak AY-H column ($4.6 \times 250 \mathrm{~mm}$; Daicel Chemical Ind. Ltd., Japan); Chiralcel OD-H column ($4.6 \times 250 \mathrm{~mm}$; Daicel Chemical Ind. Ltd., Japan).

15. Homology modeling and docking

Searching for structures related to BgADH2 was performed using pBLAST (www.ncbi.nlm.nih.gov/blast) from Protein Data Bank Database and the most appropriate templates were selected according to the sequence similarity among the possible templates. Amino acid sequence alignments were created with software package Clustal X 2 and the ESPript 3.0 network station. ${ }^{7}$ The three-dimensional (3D) model of BgADH2 was constructed using MODELER 9.12 based on the crystal structures of Rhizobium etli alcohol dehydrogenase (PDB: 4FGS), Ralstonia sp. alcohol dehydrogenases (PDB: 4BMS, 4BMN, and 4I5E), by multi-template homology modeling (John Wiley \& Sons Software, San Francisco, CA). ${ }^{8}$ The
best quality model was evaluated by PROCHECK (EMBI-EBI, Cambridge, UK) and was chosen for further docking studies by Autodock 4.0. ${ }^{9}$

16. Chiral GC chromatograms

Figure S10. Chiral GC chromatograms of 10 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c) and $B g A D H 5$ (d).

Figure S11. Chiral GC chromatograms of 11 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).

Figure S12. Chiral GC chromatograms of $\mathbf{1 5}$ and its corresponding chiral alcohols (a), the corresponding bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).

Figure S13. Chiral GC chromatograms of 16 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).

Figure S14. Chiral GC chromatograms of 17 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).

Figure S15. Chiral GC chromatograms of 23 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S16. Chiral GC chromatograms of 24 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S17. Chiral GC chromatograms of $\mathbf{2 5}$ and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S18. Chiral GC chromatograms of 26 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).

Figure S19. Chiral GC chromatograms of 27 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

17. Chiral HPLC chromatograms

Figure S20. Chiral HPLC chromatograms of $\mathbf{1 2}$ and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S21. Chiral HPLC chromatograms of $\mathbf{1 3}$ and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S22. Chiral HPLC chromatograms of 14 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S23. Chiral HPLC chromatograms of 18 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S24. Chiral HPLC chromatograms of 20 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 2(b)$.

Figure S25. Chiral HPLC chromatograms of 21 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 2(b)$.

Figure S26. Chiral HPLC chromatograms of 22 and its corresponding chiral alcohols (a), the bioproducts catalyzed by BgADH 2 (b).

Figure S27. Chiral HPLC chromatograms of 28 and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S28. Chiral HPLC chromatograms of 29 (a) and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S29. Chiral HPLC chromatograms of $\mathbf{3 0}$ and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).

Figure S30. Chiral HPLC chromatograms of $\mathbf{3 1}$ and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S31. Chiral HPLC chromatograms of $\mathbf{3 2}$ and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d)

Figure S32. Chiral HPLC chromatograms of 34 (a) and its corresponding chiral alcohols (a), the bioproducts catalyzed by $B g A D H 1$ (b), $B g A D H 2$ (c), and $B g A D H 5$ (d).
18. NMR spectra of BMOB and MBHB

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of BMOB synthesized according to a modified literature procedure (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.
140513
A3 DMS0

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of BMOB synthesized according to a modified literature procedure (126
$\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of MBHB synthesized by NaBH_{4} reduction $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}).

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of MBHB synthesized by NaBH_{4} reduction (126 MHz , DMSO- d_{6}).

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of biotransformation product $(2 S, 3 R)$-MBHB (500 MHz , DMSO- d_{6}).

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of biotransformation product $(2 S, 3 R)$-MBHB $\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$.

19. References

1 A. Mateska, G. Stojkovic, B. Mikova, K. Mladenovska, E. Popovski, ARKIVOC 2009, x, 131; M. Chao, A. Hao, H. Wang, Org. Process. Res. Dev. 2009, 13, 645.

2 Y. Nie, R. Xiao, Y. Xu, G. T. Montelione, Org. Biomol. Chem. 2011, 9, 4070; Z. Y. You, Z. Q. Liu, Y. G. Zheng, Appl. Microbiol. Biot. 2014, 98, 1671.

3 C. T. Chung, S. L. Niemela, R. H. Miller, Proc. Natl. Acad. Sci. 1989, 86, 2172.

4 Z. Q. Liu, P. J. Baker, F. Cheng, Y. P. Xue, Y. G. Zheng, Y. C. Shen, Plos One 2013, 8, 1.

5 Y. Nakamura, T. Gojobori, T. Ikemura, Nucleic. Acids. Res. 2000, 28, 292.

6 X. Chen, Y. G. Zheng, Z. Q. Liu, L. H. Sun, J. Chromatogr. B 2015, 974, 57.

7 P. Gouet, X. Robert, E. Courcelle, Nucleic. Acids. Res. 2003, 31, 3320.

8 A. Lerchner, A. Jarasch, W. Meining, A. Schiefner, A. Skerra, Biotechnol. Bioeng. 2013, 110, 2803; N. H.

Schlieben, K. Niefind, J. Muller, B. Riebel, W. Hummel, D. Schomburg, J. Mol. Biol. 2005, 349, 801; A. Fiser, A. Sali, Macromolecular Crystallography, Pt D 2003, 374, 461.

9 F. Osterberg, G. M. Morris, M. F. Sanner, A. J. Olson, D. S. Goodsell, Proteins 2002, 46, 34.

