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Supp. Section S1 – Crystal structure and definition of the structural parameters that characterize the 

dimers 

 

(a) (b) 

  
Figure S1a. Stacks of monomers of (a) compound 1 at 75 K and (b) of compound 2 at the crystal structure resolved 
at 100 K. Hydrogen atoms are omitted for clarity. Along the manuscript, the discussion is based on the spin state of 
the dimers highlighted with a red line. 
 

 

  
  

 
Figure S1b. Definition of the structural parameters distance (d), longitudinal angle (ϕ1) and latitudinal angle (ϕ2) 

used to characterize the dimer along the stacking direction. Hydrogen atoms have been hidden for clarity. 

 
  



Supp. Section S2 – Computational details and model systems for the calculations in the solid state 

 

When working in the crystalline phase, the minimum energy structures of compounds 1 and 2 were obtained 

through variable-cell geometry optimizations, in which the size and shape of the unit cell was allowed to change. 

Those were first obtained using supercells formed by two columns of four radicals in its crystal-structure 

coordinates (see Figure S2a). For these calculations, the -point sampling of the Brillouin zone was employed. Then, 

to confirm the presence of two different minima in the potential energy surface of the HS state of compound 1, a 

second supercell containing four columns of two radicals in its crystal-structure was used (see Figure S2b). In this 

case, a 1x4x1 grid of K-points was used in the sampling of the Brillouin zone in order to properly describe the 

propagation in the stacking direction. The use of both types of supercells yielded the same minima. Finally, we must 

note that we have used the spin state of the individual dimers when defining the spin state of the different minima 

in the solid state. That is, in 1-HTHS, 1-LTHS or 2HS, where the Pair-I dimers are in its triplet HS state, the total spin of 

the whole unit cell, which contains 8 molecules, is S=4. 

 

(a) (b) 

  
Figure S2a. Supercells used as the unit cell for the variable-cell optimizations of systems (a) 1 and (b) 2. 

 

 
Figure S2b. Alternative supercell used as the unit cell for the variable-cell optimizations of the HS state of system 1. 

 

All the calculations in the crystalline phase were carried out in three-dimensional periodic boundary conditions 

using the Quantum Espresso code.1 The Perdew-Burke-Ernzerhof (PBE) functional,2, 3 within the spin unrestricted 

formalism, together with the Vanderbilt ultrasoft pseudopotentials and the DFT-D2 parametrization of the 

Grimme’s dispersion correction4 was employed. The plane-wave kinetic energy cutoff was set to 70 Ry. The number 

of plane waves was kept constant throughout the variable-cell relaxations. A constant number of plane waves 

implied no Pulay stress, but a decreasing precision of the calculation as the volume of the supercell increased. 

However, the large cutoff employed in these calculations ensured that the artifacts arising from this change of 

precision were negligible. A series of recent benchmark calculations showed that the use of PBE, together with the 

Grimme correction, gives good predictions of the structure and cohesive energies of the molecular crystals.5 The 

vibrational modes could not be calculated because of the huge computational requirements needed to perform 

such task: each cell consisted on 232 and 344 atoms for 1 and 2, respectively, and thus, the finite differences 

technique would have required 1392 and 2064 calculations. Since three and two minima were obtained in the solid 

state for 1 and 2, we would have needed a total of 8304 energy and gradient evaluations.  



Supp. Section S3 - Minima of the HS- and LS- Potential Energy Surfaces in the Solid State 

 

For compound 1, its LT- and HT- X-ray crystal structures have been taken as the initial nuclear coordinates for a 

variable-cell optimization procedure. The resulting cell parameters and structural variables (d, ϕ1 and ϕ2) of the 

computed minima are shown in Table S3. The notable differences in those parameters between the 1-LTLS and 1-

HTHS minima are compatible with those observed between 1-LTX-ray and 1-HTX-ray. Finally, it is worth noting that the 

1-LTHS minimum has yielded unit-cell parameters and structural variables that lie between those of the 1-LTLS and 1-

HTHS minima. In turn, for compound 2, the only reported X-ray crystal structure was taken as starting structure for 

an optimization procedure on its LS and HS states, yielding the 2LS and 2HS minima, respectively (see Table S3). 

 

Table S3. Unit cell parameters (a, b, c, , , ) and main structural variables (d, ϕ1, ϕ2) of the Pair-I dimers in the 
reported X-ray crystal structures and in the computed minima of 1 and 2. 

 d (Å) ϕ1 (º) ϕ2 (º) a (Å) b (Å) c (Å)  (º)  (º)  (º) 

X-ray crystal structures 
1-LTX-ray 3.50 78.8 75.6 8.11 8.65 9.47 80.5 67.8 90.2 
1-HTX-ray 3.73 70.6 81.8 8.25 8.61 9.52 79.8 67.1 86.5 

2X-ray 3.48 80.5 80.4 9.97 8.16 20.88 90.0 99.3 90.0 

Minimum energy structures 
1-LTLS 3.34 83.2 77.5 8.01 8.39 9.31 80.2 70.2 92.1 
1-HTHS 3.79 66.3 81.2 8.17 8.50 9.40 78.8 66.6 84.7 
1-LTHS 3.57 77.1 83.4 8.10 8.43 9.30 79.3 69.9 88.7 

2LS 3.33 81.7 82.9 8.83 7.02 18.32 90.0 99.8 90.0. 
2HS 3.52 78.8 82.9 8.77 7.20 18.09 90.0 99.2 90.0 

 

Supp. Section S4 – Calculation of the magnetic exchange couplings 

 
The Heisenberg Hamiltonian used throughout this paper is 𝐻̂ = − 2 ∑ 𝐽𝐴𝐵 · 𝑆̂𝐴 · 𝑆̂𝐵. The magnetic exchange 

coupling (𝐽𝐴𝐵) of the dimer of 1-LTHS (referred to as 𝐽𝐼) has been calculated at the B3LYP//6-311++g(d,p) level as 

implemented in Gaussian09.6 The Broken Symmetry (BS) approach7, 8 has been used to properly describe the open-

shell low-spin state, together with the projection technique proposed by Yamaguchi and co-workers.9 Note that we 

have selected the same method that was used for the calculation of the magnetic exchange couplings at the LT and 

HT crystal structures reported in ref. 9 of the main text. 

 
Supp. Section S5 - Vibrational and electronic contributions to entropy 

 

The importance of the vibrational and electronic contributions to entropy in driving the phase transition from LT 

to HT in compound 1 is analyzed in this section. At 𝑇1 2⁄ , the free energy (G) of both phases is the same, so 𝛥𝐺 is 

equal to zero and one can write (eq.1):  

 

𝛥𝑆𝑡𝑜𝑡(𝑇1 2⁄ ) = 𝛥𝐻𝑡𝑜𝑡(𝑇1 2⁄ ) (1) 

 Assuming that the contribution of the translational and rotational terms to total entropy is negligible, we can 

split this quantity into its electronic and vibrational components (eq. 2):  

 

 

The value of 𝛥𝑆𝑒𝑙𝑒𝑐 can be considered to be temperature-independent and can be estimated using 𝛥𝑆𝑒𝑙𝑒𝑐 = 𝑅 ·

ln (2𝑆 + 1), which corresponds to ca. 0.08 kcal·mol−1 at 𝑇1 2⁄ = 60 K.10 In turn, 𝑆𝑣𝑖𝑏 could be evaluated from ab initio 

calculations using the frequencies of the vibrational normal modes of the crystal (𝑣𝑖). However, this would entail a 

huge computational effort (see Section S2) and, furthermore, small errors on the evaluation of 𝑣𝑖 usually implies 

large deviations on 𝑆𝑣𝑖𝑏, which would certainly put in doubt the accuracy of our estimation. In any case, following 

equations 1 and 2, and considering that ΔH is the adiabatic energy gap found between 1-LTLS and 1-HTHS (0.6 

kcal·mol−1 per dimer), the contribution of vibrational entropy at  𝑇1 2⁄  would be ca. 0.52 kcal·mol−1 (0.6 − 0.08 

kcal·mol−1 per dimer). Since this estimation depends strongly on the evaluation of ΔH, and it is expected that the 

𝛥𝑆𝑡𝑜𝑡(𝑇) = 𝛥𝑆𝑒𝑙𝑒𝑐 + 𝛥𝑆𝑣𝑖𝑏(𝑇) (2) 



PBE-D2 method overestimates the stability of the LS state, we have performed a second estimation of 𝑆𝑣𝑖𝑏 using the 

normal modes of the singlet and triplet dimers in gas phase conditions (eq. 3). 

 

Using this strategy, we have found that the contribution of the vibrational entropy is 0.13 kcal·mol−1 per 

molecule. This value is in agreement with the expected overestimation of ΔH by the PBE functional. However, it 

becomes clear that vibrational entropy must be the main driving force in the phase transition of compound 1 (this 

has also been reported recently for the phase transitions of dithiazolyl-based radicals11). Nevertheless, as 

mentioned in the main text, the population of the HS state would be a necessary step to reach 1-LTHS and, 

eventually, 1-HTHS. Therefore, even though the vibrational entropy provides the thermodynamic stability of the HT 

phase in the high temperature regime, the phase transition occurs driven by the population of the HS state. 

 

Supp. Section S6 – Computational details and structural information on the LS and HS minima of 1 and 

2 calculated in the gas phase. 

 
When working in gas phase conditions, the minimum energy structures of the HS (S=1) and LS (S=0) states of 

compounds 1, 2 and 3 were obtained starting from the corresponding crystalline structures (when available) and 

using PBE-D2/TZVP as implemented in Gaussian09 package.6  

 

In order to determine whether the energy barrier from 1-LTLS to 1-HTHS at the HS-PES is due to the constraints 

imposed by the crystal structure or, alternatively, due to the existence of two stable conformations of the dimer in 

the triplet state, we have performed geometry optimizations of the dimer in gas phase (ie. isolated pairs) 

conditions. Our calculations show that only one minimum exists for the HS state at gas phase and that its slippage is 

larger than the one obtained for the LS minimum (see Table 1 in the main text). Thus, this result indicates that the 

metastable 1-LTHS minimum exists due to the presence of an energy barrier originated on the intermolecular 

interactions between the columns of stacked radicals. 

 

In order to rationalize the presence/absence of a second minimum in the HS-PES of 2, optimizations of its dimer 

were performed in gas phase. Under these conditions, the crystal packing cannot be a source of constraints in the 

minimization procedure and, thus, a second minimum presenting larger slippage would be detected (if it exists). 

Those optimization procedures have been performed starting from the crystal structure of 2 in both the LS and HS 

states. We have further explored the HS-PES of 2 by means of multiple optimization procedures in which we have 

started from more slipped dimer structures, similar to those of the HS minima of compound 1. After this inspection, 

only one LS and one HS minima have been found in the gas phase for compound 2, whose characteristic 

geometrical parameters (d, ϕ1 and ϕ2) are much similar than the ones shown between the HS and LS minima in 

compound 1 (see Table 1 in the main text). 

 

Supp. Section S7 – Calculation and decomposition of interaction energies. 

 
The nature of any intermolecular interaction can be determined by finding the dominant energetic component 

in an intermolecular perturbation theory (IMPT) analysis.12 Assuming that the polarization and charge-transfer 

components of the IMPT interaction energy are 1 order of magnitude smaller than the remaining ones (as is usually 

done), the IMPT intermolecular interaction energy between two radicals, A and B, takes the following expression:13  

 

 

where each term has the following physical meaning: (1) 𝐸𝑒𝑟  is the exchange−repulsion energetic component that 

represents the repulsion that electrons feel when they occupy the same point of the space, according to the Pauli 

exclusion principle. This term is known to be proportional to the exponential of the overlap integral between the A 

and B wave functions; (2) 𝐸𝑒𝑙 is the electrostatic energetic component, which can be accurately approximated as 

𝑆𝑣𝑖𝑏 = ∑ (
ℎ𝑣𝑖

𝑇

1

𝑒ℎ𝑣𝑖 𝑘𝐵𝑇⁄ − 1
− 𝑘𝐵𝑙𝑛(1 − 𝑒−ℎ𝑣𝑖 𝑘𝐵𝑇⁄ ))

𝑁𝑣𝑖𝑏

𝑖=1

 (3) 

𝐸𝑖𝑛𝑡 = 𝐸𝑒𝑟 + 𝐸𝑒𝑙 + 𝐸𝑑𝑖𝑠𝑝 + 𝐸𝑏𝑜𝑛𝑑 (3) 



the classic charge−charge interaction; (3) 𝐸𝑑𝑖𝑠𝑝 is the dispersion energetic component, a non-classical term that 

arises from the instantaneous dipole−dipole interactions resulting from the correlated motions of the electrons in A 

and B; (4) 𝐸𝑏𝑜𝑛𝑑  is the bonding energetic component, associated with the pairing, produced in the dimer, of the 

unpaired electrons of fragments A and B.  

 

The total interaction energy (𝐸𝑖𝑛𝑡) between the two monomers that form the dimer has been calculated as: 

 

 

Then, the total interaction energy without the Grimme-D2 correction has been computed in order to evaluate 

the contribution of the dispersion term (𝐸𝑑𝑖𝑠𝑝). Since this correction is usually applied to improve the description of 

the dispersion interactions (ie. van der Waals interactions), the difference between the 𝐸𝑖𝑛𝑡 when including or not 

Grimme-D2 correction can be roughly associated to the dispersion component. The bonding term 𝐸𝑏𝑜𝑛𝑑  originates 

from the paring component that is present when the dimer is found in the singlet state, and is strictly zero in the HS 

state. Consequently, it has been calculated as the vertical energy difference between both spin states at the each 

geometry. The electrostatic interaction (𝐸𝑒𝑙) between the electron densities of the two monomers in the dimer has 

been approximately calculated as the sum of the classical charge-charge components by using the obtained 

optimum geometries and the atomic charges obtained within a NBO analysis14 performed on the converged spin 

wave-functions. Finally the exchange-repulsion term 𝐸𝑒𝑟  has been calculated as the difference between the total 

interaction energy and the previous dispersion, bonding and electrostatic terms. At this point, it must be stressed 

that our intention here has not been to obtain a quantitative estimation of all interactions but to have trends and, 

to this purpose, we believe that such estimation is sufficient. All energy evaluations have been performed at the 

B3LYP//6-311++g(d,p) level as implemented in Gaussian09.6  

 

Apart from the two minima, we have also evaluated 𝐸𝑖𝑛𝑡, and the contribution of the different terms, in three 

more structures built by doing linear interpolation and extrapolation starting from the structures of the HS- and LS- 

minima. Therefore, the relative position of all atoms has been modified to obtain those structures. From this 

analysis, we can obtain clear picture of the 𝐸𝑖𝑛𝑡 curves around the different spin-states minima (see Fig. S7a and Fig. 

S7b). First, the results show that, for each compound, the HS minima corresponds to the structural arrangements 

for which 𝐸𝑒𝑟 + 𝐸𝑒𝑙 + 𝐸𝑑𝑖𝑠𝑝 is a minimum (see black line in Fig. S7a). In turn, the LS minima has the same 𝐸𝑒𝑟 +

𝐸𝑒𝑙 + 𝐸𝑑𝑖𝑠𝑝 terms but also includes the bonding energy (𝐸𝑏𝑜𝑛𝑑). It must be noted that this drives the LS minima 

towards the structural arrangements for which 𝐸𝑏𝑜𝑛𝑑  is maximized, that is, towards slippage angles closer to 90 

degrees (see red line in Fig. S7a). Second, the results also demonstrate that the difference in 𝐸𝑖𝑛𝑡 between the 

compounds 1 and 2 (−23.3 vs. −27.2 kcal·mol−1 for the LS minima, see Table 1) must be associated mostly to a 

change in the strength of 𝐸𝑑𝑖𝑠𝑝 (−26.3 vs. −38.8 kcal·mol−1 for the LS minima, see Table 1). 

 
Table 1. Contribution of the dispersion (𝐸𝑑𝑖𝑠𝑝), bonding (𝐸𝑏𝑜𝑛𝑑), electrostatic (𝐸𝑒𝑙), and electron repulsion 

(𝐸𝑒𝑟) terms to the total intermolecular interaction energies 𝐸𝑖𝑛𝑡 (in kcal·mol−1) at the HS and LS minima of 

compounds 1, 2 and 3 calculated at the gas phase. 

 Min. 𝑬𝒊𝒏𝒕 𝑬𝒅𝒊𝒔𝒑 𝑬𝒃𝒐𝒏𝒅 𝑬𝒆𝒍 𝑬𝒆𝒓 

1 
LS −23.3 −26.3 −2.0 −10.2 15.1 

HS −22.5 −21.7 0.0 −10.0 9.3 

2 
LS −27.2 −38.8 −1.9 2.5 11.0 

HS −26.4 −35.2 0.0 3.2 5.6 

3 
LS −22.0 −28.3 −1.5 −2.0 9.8 

HS −21.7 −25.6 0.0 −2.4 6.3 

 

 

 

 

 

 

𝐸𝑖𝑛𝑡 = 𝐸𝑑𝑖𝑚𝑒𝑟 − 𝐸𝑚𝑜𝑛𝑜𝑚𝑒𝑟1 − 𝐸𝑚𝑜𝑛𝑜𝑚𝑒𝑟2 (5) 



1 2 3 

   
Figure S7a. Evolution of the interaction energies between monomers of compounds 1, 2 and 3 along the structural 

distortion that connects the two minima, here represented by the slippage (longitudinal) angle ϕ1. The open circles 

correspond to the position of the minima for each spin state. 

 

1 2 3 

   
Figure S7b. Evolution of the dispersion (𝐸𝑑𝑖𝑠𝑝), electrostatic (𝐸𝑒𝑙), Pauli exchange-repulsion (𝐸𝑒𝑟) and bonding 

energy (𝐸𝑏𝑜𝑛𝑑) interactions between monomers of compounds 1, 2 and 3 along the structural distortion that 

connects the two minima, here represented by the slippage (longitudinal) angle ϕ1.  
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