Supporting Information

5,5'-Diamino-BIPHEP Ligands Bearing Small Selector Units for Non-Covalent Binding of Chiral Analytes in Solution

Golo Storch ${ }^{[a]}$, Max Siebert ${ }^{[a]}$, Frank Rominger ${ }^{[a]}$ and Oliver Trapp* ${ }^{[a]}$
${ }^{[a]}$ Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Table of Contents

1. Synthetic Procedures 4
1.1. General Remarks 4
1.2. Ligand and Complex Preparation 5
1.2.1. 5,5'-Dinitro-2,2'-biphenol 5
1.2.2. 5,5'-Dinitro-(1,1'-biphenyl)-2,2'-diyl bis(trifluoromethanesulfonate) 6
1.2.3. $5,5^{\prime}$-Diamino-(1,1'-biphenyl)-2,2'-diyl bis(trifluoromethanesulfonate) 7
1.2.4. 5,5'-Bis[(tert-butoxycarbonyl)amino]-(1,1'-biphenyl)-2,2'-diyl bis(trifluoromethanesulfonate) 8
1.2.5. Diphenylphosphine oxide 9
1.2.6. 5,5'-Bis[(tert-butoxycarbonyl)amino]-(1,1'-biphenyl)-2,2'-diyl-bis(diphenylphosphine oxide) 10
1.2.7. 5,5'-Diamino-(1,1'-biphenyl)-2,2'-diyl bis(diphenylphosphine oxide). 11
1.2.8. 5,5‘-Bis(3,5-dichlorobenzoylamino)-BIPHEP(O) 12
1.2.9. 5,5‘-Bis[(3,5-dichlorobenzoylaminoacetyl)amino]-BIPHEP(O) 13
1.2.10. 5,5'-Bis(3,5-Dichlorophenylureylene)-BIPHEP(O). 14
1.2.11. 5,5'-Bis(3,5-dichlorobenzoylamino)-BIPHEP 15
1.2.12. $[(X) R h(C O D)]\left(B F_{4}\right)$ 16
1.3. Phenylalanine Derivatives 17
1.3.1. Compound 9 17
1.3.2. Compound 10 18
1.3.3. Compound 11 18
1.3.4. Compound 12 19
2. NMR Interaction Studies 20
2.1. Complex 6 / (S)-Amidoester 7 20
2.2. Complex $6 /(S)$-Amidoester 8 21
2.3. Complex $6 /(S)$-Diamide 9 22
2.4. Complex $6 /(S)$-Diamide 10 23
2.5. Complex $6 /(S)$-Diamide 11 24
2.6. Complex 6 / (S)-Diamide 12 25
2.7. Complex 6 / (S)-Diamide 13 26
2.8. Complex 6 / (S)-Diamide 13 (50\% ee) 28
2.9. Complex $6 /(S)$-Diamide 13 (25 and 75% ee) 29
2.10. Complex 6 / rac-Diamide 13 30
2.11. Linear Correlation of Splitting and Enantiomeric Excess of Analyte (Complex 6 / Ac-Phe- NHMe) 31
2.12. [(BIPHEP)Rh(COD)] $\left(\mathrm{BF}_{4}\right) /(S)$-Diamide 13. 32
2.13. 5,5‘-Bis(3,5-dichlorobenzoylamino)-BIPHEP/ (S)-Diamide 13 33
3. NMR-spectra 34
3.1. Cf. 1.1.1 34
3.2. Cf. 1.1.2 35
3.3. Cf. 1.1.3 37
3.4. Cf. 1.1.4 39
3.5. Cf. 1.1.6 41
3.6. Cf. 1.1.7 43
3.7. Cf. 1.1.8 45
3.8. Cf. 1.1.9 47
3.9. Cf. 1.1.10 49
3.10. Cf. 1.1.11 51
3.11. Cf. 1.1.12 53

1. Synthetic Procedures

1.1. General Remarks

Syntheses with air sensitive reactants were carried out under an argon atmosphere (Ar 5.0) under exclusion of air. All glassware was heated prior to use and standard Schlenk techniques were applied. THF, toluene, diethyl ether, acetonitrile and DCM were dried in an MB SPS-800 system and stored under argon. NMR-spectra were recorded on Bruker Avance 600, 500, 400 and 300 MHz spectrometers. Chemical shifts are reported in ppm, coupling constants J in Hz and peak multiplicity is defined by s (singlet), d (doublet), t (triplet) and m (multiplet). Broad signals are labeled as such (b). The solvent residual signals were used for calibration. ${ }^{[1]}$ Assignment of all signals was done by means of two-dimensional experiments (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}-\mathrm{ME}$ and $\left.{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HMBC}\right)$. Mass spectra were recorded on a JEOL JMS-700 Magnetic Sector, Bruker ApexQe hybrid 9.4 T FT-ICR, or a Finnigan MAT TSQ 700 spectrometer. Infrared spectra were recorded on a Thermo Scientific Nicolet 6700 ATR-FT-IR spectrometer. X-Ray crystallographic analysis was done on a Bruker Smart CCD or a Bruker APEX diffractometer. All chemicals were obtained from Aldrich, Acros, TCI or Alfa Aesar unless otherwise stated and used without further purification

1.2. Ligand and Complex Preparation

1.2.1. 5,5'-Dinitro-2,2'-biphenol

I
This compound was synthesized according to a procedure described in literature ${ }^{[2]}$ with modified workup. Ortho-biphenol ($37.8 \mathrm{~g}, 203 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dissolved in acetic acid (120 mL) and cooled to $0^{\circ} \mathrm{C}$ under vigorous stirring. A solution of $\mathrm{HNO}_{3}(28.3 \mathrm{~mL}, 65 \%, 412 \mathrm{mmol}, 2.03 \mathrm{eq}$.) in acetic acid $(20 \mathrm{~mL})$ was added very carefully as quickly as possible via a dropping funnel. The reaction mixture was stirred for additional 45 min at $0^{\circ} \mathrm{C}$ and subsequently all solid products were collected over fritted glass. The crude product was washed with water ($2 \times 20 \mathrm{~mL}$) and dried under reduced pressure at $60^{\circ} \mathrm{C}$. The crude product was suspended in acetonitrile (350 mL), heated to reflux and slowly cooled to room temperature overnight. The solid was collected over fritted glass and dried under reduced pressure.

Beige solid, $8.98 \mathrm{~g}(16 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.500.13 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=7.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$), 8.11-8.17 (m, 4H, $\mathrm{H}^{2,6}$), 11.25 (bs, 2H, OH); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMSO-d6, $125.76 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=116.1$ $\left(2 C, C^{3}\right), 123.8\left(2 C, C^{5}\right), 125.5\left(2 C, C^{2 / 6}\right), 127.4\left(2 C, C^{2 / 6}\right), 139.3\left(2 C, C^{1}\right), 161.5\left(2 C, C^{4}\right)$; HR-MS (EI $)$: m / z calc. for $\left([\mathrm{M}]^{+},\left[\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~N}_{2}\right]^{+}\right)$: 276.0377, found: 276.0363.

1.2.2. 5,5'-Dinitro-(1,1'-biphenyl)-2,2'-diyl bis(trifluoromethanesulfonate)

II
Compound I (14.5 g, 52.5 mmol , 1.0 eq.) was suspended in anhydrous DCM (300 mL) and anhydrous pyridine ($12.6 \mathrm{~mL}, 157 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Tf}_{2} \mathrm{O}$ ($26.5 \mathrm{~mL}, 157 \mathrm{mmol}, 3.0$ eq.) was slowly added. Stirring was continued over night. Subsequently, all volatiles were removed under reduced pressure and the resulting crude mixture was partitioned between EtOAc (500 mL) and hydrochloric acid ($1 \mathrm{M}, 500 \mathrm{~mL}$). The organic phase was washed with sat. NaHCO_{3} solution $(400 \mathrm{~mL})$ and brine $(400 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All volatiles were removed under reduced pressure.

Beige solid, $24.1 \mathrm{~g}(85 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500.13 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 8.43$ $\left(\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 8.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=9.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125.76\right.$ $\mathrm{MHz}, 300 \mathrm{~K}): \delta=118.3\left(\mathrm{q}^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=320.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7}\right), 123.4\left(2 \mathrm{C}, \mathrm{C}^{5}\right), 127.2\left(2 \mathrm{C}, \mathrm{C}^{6}\right), 127.9\left(2 \mathrm{C}, \mathrm{C}^{2}\right), 129.2$ (2C, C^{3}), $147.1\left(2 \mathrm{C}, \mathrm{C}^{4}\right), 150.3\left(2 \mathrm{C}, \mathrm{C}^{1}\right)$; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 470.59 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=-73.4$; HR-MS (EI ${ }^{+}$): m / z calc. for $\left([\mathrm{M}]^{+},\left[\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{10} \mathrm{~N}_{2} \mathrm{~F}_{6} \mathrm{~S}_{2}\right]^{++}\right)$: 539.9363, found: 539.9387.

1.2.3. 5,5'-Diamino-(1,1'-biphenyl)-2,2'-diyl bis(trifluoromethanesulfonate)

III
Compound II ($22.0 \mathrm{~g}, 40.7 \mathrm{mmol}, 1.0$ eq.) was suspended in EtOH (220 mL) and powdered iron ($17.1 \mathrm{~g}, 305 \mathrm{mmol}, 7.5$ eq.) was added. The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and hydrochloric acid $(37 \%, 60.9 \mathrm{~mL}, 742 \mathrm{mmol}, 18.2$ eq.) was added portion wise within 20 min . Stirring was continued for 3 h under reflux conditions. Subsequently, all volatiles were removed under reduced pressure. The crude mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and DCM $(100 \mathrm{~mL})$ and adjusted to $\mathrm{pH}=6$ with aqueous NaOH solution (half concentrated). The aqueous phase was absorbed with excess $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the resulting residue was extracted with $\mathrm{DCM}(2 \mathrm{~L})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude product was re-dissolved in DCM and passed through silica in a fritted glass funnel (elution with 2 L DCM). All volatiles were removed under reduced pressure.

White solid, $16.4 \mathrm{~g}(84 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $500.13 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=5.65$ (bs, 4H, NH2), 6.55 (d, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 6.65\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (DMSO-d6, $75.47 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=114.4\left(2 \mathrm{C}, \mathrm{C}^{6}\right)$, 115.7 (2C, C2), 117.9 (q, $\left.{ }^{1} J_{C-F}=320.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7}\right), 121.9\left(2 \mathrm{C}, \mathrm{C}^{5}\right), 129.9\left(2 \mathrm{C}, \mathrm{C}^{3}\right), 136.2\left(2 \mathrm{C}, \mathrm{C}^{1}\right)$, $149.1\left(2 \mathrm{C}, \mathrm{C}^{4}\right)$; ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ (DMSO-d6, $470.59 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=-74.3$; HR-MS (El^{+}): m/z calc. for ([M] ${ }^{+},\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{~F}_{6} \mathrm{~S}_{2}\right]^{+}$): 479.9879, found: 479.9889; IR (FT-ATR) : $v\left(\mathrm{~cm}^{-1}\right)=3492,3402,1627,1587,1488,1443,1405,1391$, $1347,1302,1247,1221,1133,1026,934,860,812,773,726$.

1.2.4. 5,5'-Bis[(tert-butoxycarbonyl)amino]-(1,1'-biphenyl)-2,2'-diyl

bis(trifluoromethanesulfonate)

Compound III ($15.4 \mathrm{~g}, 32.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{Boc}_{2} \mathrm{O}(70.0 \mathrm{~g}, 321 \mathrm{mmol}, 10 \mathrm{eq}$.) were dissolved in THF (100 mL) and stirred at $50^{\circ} \mathrm{C}$ over night. Complete conversion was confirmed by NMR analysis of a small sample. Otherwise, stirring had to be continued at $50^{\circ} \mathrm{C}$. Subsequently, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and N, N-dimethylethylenediamine ($70.0 \mathrm{~mL}, 641 \mathrm{mmol}, 20 \mathrm{eq}$.) was carefully added. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ over night. All volatiles were removed under reduced pressure and the remaining residue was partitioned between sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(300 \mathrm{~mL})$ and EtOAc $(300 \mathrm{~mL})$. The organic phase was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution until the aqueous phase reached $\mathrm{pH}=6-7$. It was then washed with brine $(300 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All volatiles were removed under reduced pressure. The crude product was loaded on a fritted glass funnel, washed with n-pentane (170 mL , in small portions), and subsequently dried under reduced pressure.

White solid, $18.3 \mathrm{~g}(84 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $600.25 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=1.48\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{H}^{10}\right.$), $7.51(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 9.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMSO-d6, $150.93 \mathrm{MHz}, 300 \mathrm{~K}): \delta=28.0\left(6 \mathrm{C}, \mathrm{C}^{10}\right), 80.0\left(2 \mathrm{C}, \mathrm{C}^{9}\right), 117.8\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=320.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7}\right), 119.8\left(2 \mathrm{C}, \mathrm{C}^{6}\right)$, $120.6\left(2 C, C^{2}\right), 122.4\left(2 C, C^{5}\right), 129.1\left(2 C, C^{3}\right), 140.2\left(2 C, C^{1 / 8}\right), 140.3\left(2 C, C^{1 / 4 / 8}\right), 152.7\left(2 C, C^{1 / 4 / 8}\right)$; ${ }^{19}$ F-NMR (DMSO-d6, $470.59 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=-74.1$; HR-MS (EI ${ }^{+}$): m/z calc. for ($[\mathrm{M}]^{+}$, $\left.\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{~N}_{2} \mathrm{~F}_{6} \mathrm{~S}_{2}\right]^{+}\right)$: 680.0928, found: 680.0927; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right)=3305,1702,1612,1590,1537$, $1500,1479,1423,1409,1393,1371,1308,1271,1247,1212,1151,1131,1101,1065,1027,881$, 865, 832, 777, 758, 735, 696.

1.2.5. Diphenylphosphine oxide

This is a known compound. It was prepared using a literature known procedure with modifications. ${ }^{[3-5]}$ Powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(1.25 \mathrm{~g}, 9.06 \mathrm{mmol}, 2.0$ eq.) was suspended in $\mathrm{ACN}(5 \mathrm{~mL})$ and $\mathrm{Ph}_{2} \mathrm{PCl}(1.00 \mathrm{~g}, 4.53 \mathrm{mmol}, 1.0$ eq.) was added. The reaction mixture was cooled with a water bath and $\mathrm{H}_{2} \mathrm{O}$ (434 $\mu \mathrm{L}, 24.1 \mathrm{mmol}, 5.3$ eq.) was added dropwise. Stirring was continued for 4 h at room temperature. Subsequently, the reaction mixture was partitioned between DCM (40 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$. The organic phase was separated and the aqueous phase extracted with DCM (40 mL). The combined organic phases were washed with sat. aq. NaHCO_{3} solution (3 x 40 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. All volatiles were removed under reduced pressure. The resulting oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, concentrated and cooled to $-18^{\circ} \mathrm{C}$ over night upon which crystallisation was initiated.

White crystalline solid, $655 \mathrm{mg}(72 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300.51 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=7.47-7.62\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{Ar}}\right)$, 7.67-7.75 (m, 4H, H^{Ar}), $8.09\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=481.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{H}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.65 \mathrm{MHz}, 300 \mathrm{~K}\right)$: $\delta=21.7(\mathrm{~s}, P-\mathrm{H})$.

1.2.6. 5,5'-Bis[(tert-butoxycarbonyl)amino]-(1,1'-biphenyl)-2,2'-diyl-

 bis(diphenylphosphine oxide)

Compound IV ($4.00 \mathrm{~g}, 5.88 \mathrm{mmol}, 1.0$ eq.), dppb ($426 \mathrm{mg}, 999 \mu \mathrm{~mol}, 0.17 \mathrm{eq}.), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(377 \mathrm{mg}$, $411 \mu \mathrm{~mol}, 0.07$ eq.) and $\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}(2.38 \mathrm{~g}, 11.8 \mathrm{mmol}, 2.0$ eq.) were dissolved in anhydrous, degassed DMSO (15 mL). Anhydrous Hünigs base ($5.12 \mathrm{~mL}, 29.4 \mathrm{mmol}, 5.0 \mathrm{eq}$.) was added and the resulting reaction mixture was stirred at $110^{\circ} \mathrm{C}$ over night. NMR analysis of a small sample showed predominant formation of mono cross-coupled product. Thus, dppb ($276 \mathrm{mg}, 647 \mu \mathrm{~mol}, 0.11 \mathrm{eq}$.), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(269 \mathrm{mg}, 294 \mu \mathrm{~mol}, 0.05 \mathrm{eq}\right.$.) and $\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}(1.19 \mathrm{~g}, 5.88 \mathrm{mmol}, 1.0$ eq.) were added and the reaction mixture was stirred over night. NMR analysis of a small sample now showed predominant formation of V. Subsequently, the reaction mixture was diluted with DCM (200 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and brine $(2 \times 150 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all volatiles were removed under reduced pressure. The crude product was purified by flash column chromatography (silica, hexanes:EtOAc 2:1 -> EtOAc -> hexanes:2-propanol 10:1 -> hexanes:2propanol 6:1, R_{f} (hexanes:2-propanol 4:1) $=0.59$).

Off-white solid, $1.21 \mathrm{~g}(26 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.500.13 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{H}^{9}\right), 6.97(\mathrm{dd}$, $\left.{ }^{3} J_{H-P}=13.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.15\left(\mathrm{~m},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.32-7.37(\mathrm{~m}, 4 \mathrm{H}$, $\left.H^{11 / 12 / 13 / 15 / 16 / 17}\right), 7.40-7.48\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{11 / 12 / 13 / 15 / 16 / 17}\right), 7.50-7.61\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}^{11 / 12 / 13 / 15 / 16 / 17}\right), 9.38(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (DMSO-d6, $125.76 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=28.0\left(6 \mathrm{C}, \mathrm{C}^{9}\right)$, $79.4\left(2 \mathrm{C}, \mathrm{C}^{8}\right), 116.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right.$, $\left.2 \mathrm{C}, \mathrm{C}^{6}\right), 120.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{2}\right), 123.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=107.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{4}\right), 127.9\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}, 4 \mathrm{C}\right.$, $\mathrm{C}^{11 / 12 / 15 / 16}$), $128.2\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{11 / 12 / 15 / 16}\right.$), $131.0\left(2 \mathrm{C}, \mathrm{C}^{13 / 17}\right), 131.2\left(2 \mathrm{C}, \mathrm{C}^{13 / 17}\right), 131.4(\mathrm{~d}$, $\left.{ }^{2 / 3} J_{C-p}=8.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{11 / 12 / 15 / 16}\right), 131.8\left(\mathrm{~d},{ }^{3} J_{C-P}=9.8 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{11 / 12 / 15 / 16}\right), 133.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}}=12.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{5}\right)$, $134.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{P}}=103.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{10 / 14}\right), 134.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.1 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{10 / 14}\right.$), $141.0\left(\mathrm{~b}, 2 \mathrm{C}, \mathrm{C}^{1}\right), 145.3(\mathrm{~b}, 2 \mathrm{C}$, C^{3}), $152.2\left(2 \mathrm{C}, \mathrm{C}^{7}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,121.65 \mathrm{MHz}, 300 \mathrm{~K}): \delta=26.2 ;$ HR-MS (ESI ${ }^{+}$): m / z calc. for $\left([\mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{P}_{2}\right]^{+}\right): 785.2904$, found: 785.2908; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right)=2976,1720,1580,1526$, $1485,1437,1414,1391,1366,1315,1275,1232,1154,1115,1072,1048,1027,998,876,839,745$, 720, 693.

1.2.7. 5,5'-Diamino-(1,1'-biphenyl)-2,2'-diyl bis(diphenylphosphine oxide)

VI
Compound V ($843 \mathrm{mg}, 1.07 \mathrm{mmol}, 1.0$ eq.) was suspended in 2-propanol (4 mL) and hydrogen chloride (5 M in 2-propanol, $10.7 \mathrm{~mL}, 53.7 \mathrm{mmol}, 50.0$ eq.) was added. The reaction mixture was stirred over night. Subsequently, all volatiles were removed under reduced pressure and the residue was re-suspended in 2-propanol (2 mL). EtOAc (20 mL) was added and the product precipitated. The supernatant solution was removed via filter canula and the hydrogen chloride salt of the product $(\mathrm{M} \cdot 2 \mathrm{HCl})$ was dried in vacuo.

Isolation of the free amine: The hydrogen chloride salt was partitioned between DCM and $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was adjusted to $\mathrm{pH}=8-9$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ under vigorous stirring. The organic phase was separated and the aqueous phase extracted with DCM four times. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all volatiles were removed under reduced pressure.

White solid, $654 \mathrm{mg}(\mathrm{M} \cdot 2 \mathrm{HCl}, 93 \%)$, NMR analysis was performed with the free amine: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, 500.13 MHz, 300 K): $\delta=5.23\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 5.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 6.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 6.67(\mathrm{dd}$, $\left.{ }^{3} J_{H-P}=13.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.29-7.39\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{8 / 9 / 10 / 12 / 13 / 14}\right), 7.46-7.64(\mathrm{~m}, 14 \mathrm{H}$, $\left.\left.H^{8 / 9 / 10 / 12 / 13 / 14}\right) ;{ }^{13} \mathbf{C}^{1} \mathrm{H}\right\}-N M R(D M S O-d 6,125.76 \mathrm{MHz}, 300 \mathrm{~K}): \delta=111.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=13.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{6}\right), 115.5$ $\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=114.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{4}\right), 117.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{2}\right), 127.6\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right)$, $128.2\left(\mathrm{~d},{ }^{2 / 3} J_{\mathrm{C}-\mathrm{P}}=11.5 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 130.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{10 / 14}\right.$), $130.9\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\left.C^{10 / 14}\right), 131.3\left(d,{ }^{2 / 3} J_{C-p}=9.1 \mathrm{~Hz}, 4 C, C^{8 / 9 / 12 / 13}\right), 131.6\left(d,{ }^{2 / 3} J_{C-p}=9.4 \mathrm{~Hz}, 4 C, C^{8 / 9 / 12 / 13}\right), 134.6(d$, $\left.{ }^{2} J_{C-p}=13.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{5}\right), 135.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=102.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right.$), $136.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=102.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right), 146.1$ (m, 2C, C ${ }^{3}$), $150.0\left(2 C, C^{1}\right) ;{ }^{31}$ P\{ $\left.{ }^{1} \mathrm{H}\right\}-N M R(D M S O-d 6,202.46 \mathrm{MHz}, 295 \mathrm{~K}): \delta=26.1$; HR-MS (ESI $): \mathrm{m} / \mathrm{z}$ calc. for ($[\mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+}$): 585.1855, found: 585.1860; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right)=2563,1590$, $1526,1483,1436,1314,1246,1161,1116,1026,997,883,828,742,722,692$.

1.2.8. 5,5'-Bis(3,5-dichlorobenzoylamino)-BIPHEP(0)

Compound VI ($300 \mathrm{mg}, 0.513 \mathrm{mmol}, 1.0$ eq.) was dissolved in anhydrous DCM (4 mL) and anhydrous pyridine ($250 \mu \mathrm{~L}, 3.08 \mathrm{mmol}, 6.0$ eq.) was added. Subsequently, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and 3,5-dichlorobenzoylchloride ($269 \mathrm{mg}, 1.28 \mathrm{mmol}, 2.5$ eq.) was added. Stirring was continued for 1 h at room temperature. The reaction mixture was diluted with DCM (100 mL) and washed with hydrochloric acid ($1 \mathrm{M}, 100 \mathrm{~mL}$), brine $(100 \mathrm{~mL})$ and aqueous sodium hydroxide solution $(1 \mathrm{M}, 2 \mathrm{x}$ 100 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all volatiles were removed under reduced pressure.

White solid, $440 \mathrm{mg}(92 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.500.13 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=7.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.27(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{2}\right), 7.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8 / 9 / 10 / 12 / 13 / 14}\right), 7.43-7.48\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{8 / 9 / 10 / 12 / 13 / 14}\right)$, $7.58-7.68\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}^{6,8 / 9 / 10 / 12 / 13 / 14}\right)$, $7.88\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{17}\right), 7.91\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{19}\right), 10.37(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMSO-d6, 125.77 MHz, 300 K): $\delta=118.2\left(\mathrm{~d},{ }^{3} J_{C-p}=11.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{6}\right), 123.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=11.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{2}\right.$), $126.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=105.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{4}\right), 126.5\left(4 \mathrm{C}, \mathrm{C}^{17}\right), 128.0\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 128.4(\mathrm{~d}$, $\left.{ }^{2 / 3} J_{C-p}=11.5 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 131.2\left(6 \mathrm{C}, \mathrm{C}^{10,14,19}\right), 131.4\left(\mathrm{~d},{ }^{2 / 3} J_{C-p}=9.3 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 131.9(\mathrm{~d}$, $\left.{ }^{2 / 3} J_{C-p}=9.4 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 133.7\left(\mathrm{~d},{ }^{1} J_{C-P}=103.1 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right), 133.9\left(\mathrm{~d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=13.1 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{5}\right), 134.4$ $\left(4 \mathrm{C}, \mathrm{C}^{18}\right), 134.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=102.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right), 137.7\left(2 \mathrm{C}, \mathrm{C}^{16}\right), 140.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{1}\right), 144.6(\mathrm{~b}$, 2C, C^{3}), $162.6\left(2 \mathrm{C}, \mathrm{C}^{15}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,202.47 \mathrm{MHz}, 300 \mathrm{~K}): \delta=25.8 ;$ HR-MS (ESI ${ }^{+}$): m/z calc. for ($[\mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{50} \mathrm{H}_{35}{ }^{35} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}\right]^{+}$): 929.0821, found: 929.0845; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right)=3075,1677$, $1566,1517,1437,1416,1368,1311,1259,1166,1115,1067,1028,998,869,828,805,747,721$, 693, 654.

1.2.9. 5,5'-Bis[(3,5-dichlorobenzoylaminoacetyl)amino]-BIPHEP(0)

Compound $\mathrm{VI} \cdot \mathbf{2 H C l}(600 \mathrm{mg}, 913 \mu \mathrm{~mol}, 1.0$ eq.) was suspended in anhydrous DCM (5 mL) and NaHCO_{3} ($767 \mathrm{mg}, 9.13 \mathrm{mmol}, 10.0$ eq.) was added. In a second schlenk flask, N - 3,5 -dichlorobenzoyl glycine ($453 \mathrm{mg}, 1.83 \mathrm{mmol}, 2.0$ eq.) was suspended in anhydrous DCM (5 mL), EEDQ (451 mg , $1.83 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added and the mixture was stirred until a homogeneous, colorless solution had formed (approx. 10 min). This solution was subsequently added to the amine. At intervals of two hours, four further solutions of activated acid were prepared as described above and added to the reaction mixture. The reaction mixture was then diluted with DCM (50 mL) and washed with hydrochloric acid ($3 \mathrm{M}, 2 \times 50 \mathrm{~mL}$), sat. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine (50 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all volatiles were removed under reduced pressure. The crude product was purified by flash column chromatography (silica, DCM -> MeOH:DCM 3:100 -> MeOH:DCM 10:100, $\left.\mathrm{Rf}_{\mathrm{f}}(\mathrm{MeOH}: D C M 10: 100)=0.43\right)$.

Beige solid, $569 \mathrm{mg}(60 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.600.25 \mathrm{MHz}, 300 \mathrm{~K}\right) \delta=4.00\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{9}\right)$, $7.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.05\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=13.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{17 / 18 / 19 / 21 / 22 / 23}\right), 7.40-7.44$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{6,17 / 18 / 19 / 21 / 22 / 23}\right), 7.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{17 / 18 / 19 / 21 / 22 / 23}\right), 7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{17 / 18 / 19 / 21 / 22 / 23}\right), 7.57-7.64(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{H}^{17 / 18 / 19 / 21 / 22 / 23}\right), 7.87\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{15}\right), 7.92\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{13}\right), 9.12\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 10.04$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{7}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,150.95 \mathrm{MHz}, 300 \mathrm{~K}): \delta=43.4\left(2 \mathrm{C}, \mathrm{C}^{9}\right), 117.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}, 2 \mathrm{C}\right.$, C^{6}), $122.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C} \cdot \mathrm{P}}=10.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{2}\right), 125.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=106.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{4}\right), 126.3\left(4 \mathrm{C}, \mathrm{C}^{13}\right), 128.1(\mathrm{~d}$, $\left.{ }^{2 / 3} J_{C \cdot p}=11.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{17 / 18 / 21 / 22}\right), 128.5\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C} \cdot \mathrm{p}}=11.5 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{17 / 18 / 21 / 22}\right), 131.0\left(2 \mathrm{C}, \mathrm{C}^{15}\right), 131.3(2 \mathrm{C}$, $\left.C^{19 / 23}\right), 131.4\left(\mathrm{~d},{ }^{2 / 3} \mathrm{C}_{\mathrm{C} \cdot}=9.0 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{17 / 18 / 21 / 22}\right), 131.5\left(2 \mathrm{C}, \mathrm{C}^{19 / 23}\right), 132.0\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{-\cdot p}=9.5 \mathrm{~Hz}, 4 \mathrm{C}\right.$, $\mathrm{C}^{17 / 18 / 21 / 22}$), $133.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C} \cdot \mathrm{P}}=13.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{5}\right), 133.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C} \cdot \mathrm{p}}=103.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{16 / 20}\right), 134.5\left(4 \mathrm{C}, \mathrm{C}^{14}\right)$, 134.6 $\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=101.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{16 / 20}\right), 137.2\left(2 \mathrm{C}, \mathrm{C}^{12}\right), 140.2\left(2 \mathrm{C}, \mathrm{C}^{1}\right), 144.9\left(\mathrm{~m}, 2 \mathrm{C}, \mathrm{C}^{3}\right), 164.1\left(2 \mathrm{C}, \mathrm{C}^{11}\right), 167.6$ (2C, C ${ }^{8}$); ${ }^{31}$ P\{ $\left.{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,243.00 \mathrm{MHz}, 300 \mathrm{~K}): ~ \delta=28.7$; HR-MS (ESI ${ }^{+}$): m/z calc. for ($[\mathrm{M}+\mathrm{H}]^{+}$, $\left[\mathrm{C}_{54} \mathrm{H}_{41}{ }^{35} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{2}\right]^{+}$): 1043.1250, found: 1043.1265; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right)=3241,3055,2873,1653$, 1583, 1565, 1517, 1508, 1436, 1415, 1374, 1303, 1288, 1231, 1173, 1114, 1069, 1027, 1010, 997, 866, 828, 802, 692, 666.

1.2.10.5,5'-Bis(3,5-Dichlorophenylureylene)-BIPHEP(0)

Compound VI ($335 \mathrm{mg}, 573 \mu \mathrm{~mol}, 1.0$ eq.) was dissolved in anhydrous DCM (5 mL) and a solution of 3,5-dichlorophenyl isocyanate ($323 \mathrm{mg}, 1.72 \mathrm{mmol}, 3.0 \mathrm{eq}$.) in anhydrous DCM (4 mL) was added dropwise. The resulting reaction mixture was stirred over night at room temperature. Subsequently, the precipitate formed during reaction progress was removed via filtration over celite. All volatiles were removed under reduced pressure and the crude product was purified by flash column chromatography (neutral alumina, hexanes:2-propanol 20:1 -> 2:1, $R_{f}($ hexanes:2-propanol 4:1 $\left.)=0.48\right)$.

White solid, $284 \mathrm{mg}(52 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.600.25 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=7.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.15-7.19$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{2,6,19}\right), 7.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8 / 9 / 12 / 13}\right)$, 7.41-7.49 (m, 8H, $\left.\mathrm{H}^{8 / 9 / 10 / 12 / 13 / 14}\right), 7.49\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{17}\right)$, 7.58-7.65 (m, 8H, H ${ }^{8 / 9 / 10 / 12 / 13 / 14}$), $8.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 9.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMSO-d6, $150.95 \mathrm{MHz}, 300 \mathrm{~K}): \delta=116.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{2 / 6}\right), 116.4\left(4 \mathrm{C}, \mathrm{C}^{17}\right), 121.1\left(2 \mathrm{C}, \mathrm{C}^{19}\right), 121.6(\mathrm{~d}$, $\left.{ }^{3} J_{C-p}=9.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{2 / 6}\right), 123.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=107.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{4}\right), 128.0\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 128.4$ $\left(\mathrm{d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=11.7 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 131.1\left(2 \mathrm{C}, \mathrm{C}^{10 / 14}\right), 131.3\left(2 \mathrm{C}, \mathrm{C}^{10 / 14}\right), 131.3\left(\mathrm{~d},{ }^{2 / 3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8.8 \mathrm{~Hz}, 4 \mathrm{C}\right.$, $\left.C^{8 / 9 / 12 / 13}\right), 131.7\left(\mathrm{~d},{ }^{2 / 3} J_{C-p}=9.6 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right)$, $134.0\left(\mathrm{~d},{ }^{1} J_{C-p}=103.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right.$), $134.1(\mathrm{~d}$, $\left.{ }^{2} J_{C-p}=12.3 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{5}\right), 134.1\left(4 \mathrm{C}, \mathrm{C}^{18}\right), 134.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=102.7 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right), 140.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\left.\mathrm{C}^{1}\right)$, $142.0\left(2 \mathrm{C}, \mathrm{C}^{16}\right), 145.1\left(\mathrm{~b}, 2 \mathrm{C}, \mathrm{C}^{3}\right), 151.5\left(2 \mathrm{C}, \mathrm{C}^{15}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,202.47 \mathrm{MHz}, 300 \mathrm{~K}): \delta=$ 26.1; HR-MS (ESI ${ }^{+}$: m / z calc. for $\left([\mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{50} \mathrm{H}_{37}{ }^{35} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2}\right]^{+}\right.$): 959.1039, found: 959.1043; IR (FT-ATR): v $\left(\mathrm{cm}^{-1}\right)=3057,1715,1578,1524,1447,1436,1410,1373,1300,1270,1240,1182,1113$, 1047, 1027, 992, 933, 836, 786, 737, 716, 693, 668.

1.2.11.5,5'-Bis(3,5-dichlorobenzoylamino)-BIPHEP

Compound VII (429 mg, $461 \mu \mathrm{~mol})$ was dissolved in $\mathrm{PhSiH}_{3}(3.0 \mathrm{~mL})$ and heated to $120^{\circ} \mathrm{C}$ for 3 d . Subsequently, all volatiles were removed under reduced pressure and the crude product was purified by flash column chromatography (silica, hexanes:EtOAc 10:1-> 2:1, R_{f} (hexanes:EtOAc 2:1) $=0.85$) followed by precipitation from $\mathrm{Et}_{2} \mathrm{O} / n$-pentane.

White solid, $292 \mathrm{mg}(70 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.600.25 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=7.02\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.13(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}^{8 / 9 / 12 / 13}\right), 7.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8 / 9 / 12 / 13}\right)$, 7.27-7.36(m, 12H, $\left.\mathrm{H}^{8 / 9 / 10 / 12 / 13 / 14}\right)$, $7.51\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 7.70(\mathrm{bm}$, $2 \mathrm{H}, \mathrm{H}^{6}$), $7.87\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{H}^{19}\right.$), $7.88\left(\mathrm{bd}, 4 \mathrm{H}, \mathrm{H}^{17}\right.$), $10.41(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMSO-d6, 125.77 MHz , $300 \mathrm{~K}): \delta=119.6\left(2 \mathrm{C}, \mathrm{C}^{6}\right), 122.0\left(\mathrm{~m}, 2 \mathrm{C}, \mathrm{C}^{2}\right), 126.5\left(4 \mathrm{C}, \mathrm{C}^{17}\right), 128.3\left(2 \mathrm{C}, \mathrm{C}^{10 / 14}\right), 128.5\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{p}}=2.7 \mathrm{~Hz}\right.$, $\left.4 C, C^{8 / 9 / 12 / 13}\right), 128.5\left(2 C, C^{10 / 14}\right), 128.5\left(d d, J_{C-p}=3.2 \mathrm{~Hz}, 4 C, C^{8 / 9 / 12 / 13}\right), 130.9\left(d d, J_{C-p}=4.7 \mathrm{~Hz}\right.$, $J_{C-p}=3.1 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{3}$), $131.0\left(2 \mathrm{C}, \mathrm{C}^{19}\right), 132.8\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=10.5 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{8 / 9 / 12 / 13}\right), 133.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}, 4 \mathrm{C}\right.$, $\left.C^{8 / 9 / 12 / 13}\right), 134.2\left(b, 2 C, C^{5}\right), 134.3\left(4 C, C^{18}\right), 137.0\left(d d, J_{C-p}=6.9 \mathrm{~Hz}, J_{C-p}=5.0 \mathrm{~Hz}, 2 C, C^{7 / 11}\right), 137.6(d d$, $\left.J_{C-p}=7.8 \mathrm{~Hz}, J_{C-p}=6.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{7 / 11}\right), 137.9\left(2 \mathrm{C}, \mathrm{C}^{16}\right), 139.0\left(2 \mathrm{C}, \mathrm{C}^{1}\right), 147.6\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{p}}=19.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{4}\right)$, $162.7\left(2 \mathrm{C}, \mathrm{C}^{15}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR (DMSO-d6, $202.47 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=-16.8 ;$ HR-MS (ESI ${ }^{+}$): m/z calc. for ($[\mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{50} \mathrm{H}_{35}{ }^{35} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}\right]^{+}$): 897.0922, found: 897.0945; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right)=3069,1652,1564$, 1510, 1432, 1408, 1371, 1306, 1240, 1092, 1027, 998, 961, 866, 827, 804, 740, 693, 668.

1.2.12. [(X)Rh(COD)] $\left(\mathrm{BF}_{4}\right)$

A solution of compound $\mathbf{X}(89.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in degassed anhydrous DCM (2 \mathrm{~mL}$) was slowly added to $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right]\left(\mathrm{BF}_{4}\right)(40.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) dissolved in degassed anhydrous DCM $(3 \mathrm{~mL})$. The resulting reaction mixture was stirred at room temperature for 1 h . Subsequently, all volatiles were removed under reduced pressure. The crude product was dissolved in a minimum amount of degassed anhydrous DCM and precipitated with degassed anhydrous n-pentane followed by separation of the supernatant solution via filter canula. This washing procedure was repeated twice.

Bright yellow-orange solid, $105 \mathrm{mg}(88 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500.13 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=2.03-2.23(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}^{23 / 24}\right), 2.52-2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{23 / 24}\right), 2.63-2.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{23 / 24}\right), 4.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{21 / 22}\right), 4.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{21 / 22}\right)$, $6.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{12}\right), 7.26-7.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{14 / 15,16}\right), 7.38-7.43\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{9,18 / 19}\right), 7.48\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{1}\right)$, 7.49-7.52 (m, 6H, $\mathrm{H}^{18 / 19,20}$), $7.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{14 / 15}\right), 7.89\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 7.91(\mathrm{~d}$, $\left.{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{3}\right), 8.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}, \mathrm{H}^{6}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150.93 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=27.7(2 \mathrm{C}$, $\left.\mathrm{C}^{23 / 24}\right), 33.5\left(2 \mathrm{C}, \mathrm{C}^{23 / 24}\right), 98.0\left(\mathrm{~m}, 2 \mathrm{C}, \mathrm{C}^{21 / 22}\right), 101.7\left(\mathrm{~m}, 2 \mathrm{C}, \mathrm{C}^{21 / 22}\right), 119.4\left(2 \mathrm{C}, \mathrm{C}^{8}\right), 123.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=26.4\right.$, $J_{C-p}=22.9 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{10}$), $126.3\left(4 \mathrm{C}, \mathrm{C}^{3}\right), 127.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{12}\right), 127.5\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{p}}=23.1 \mathrm{~Hz}\right.$, $J_{C-p}=19.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{17}$), 128.8 ($\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{18 / 19}$), 129.1 (dd, $J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{14 / 15}$), 129.9 (dd, $\left.J_{C-P}=25.7 \mathrm{~Hz}, J_{C-P}=24.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{13}\right), 131.2\left(2 \mathrm{C}, \mathrm{C}^{20}\right), 131.5\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{9}\right), 131.8\left(2 \mathrm{C}, \mathrm{C}^{16}\right)$, $131.9\left(2 C, C^{1}\right), 133.8\left(d d, J_{C-P}=4.3 \mathrm{~Hz}, 4 C, C^{18 / 19}\right), 135.7\left(4 C, C^{2}\right), 136.3\left(\mathrm{dd}, J_{C-p}=6.6 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{C}^{14 / 15}\right)$, $136.9\left(2 C, C^{4}\right), 141.1\left(2 C, C^{7}\right), 144.5\left(d d, J_{C-p}=6.5 \mathrm{~Hz}, 2 C, C^{11}\right), 163.3\left(2 C, C^{5}\right) ;{ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 202.46 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=23.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Rh}}=145.1 \mathrm{~Hz}\right)$; HR-MS (ESI ${ }^{+}$): m/z calc. for ($\left[\mathrm{M}-\left(\mathrm{BF}_{4}\right)^{-}\right]^{+}$, $\left[\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Rh}^{35} \mathrm{Cl}_{4}\right]^{+}$): 1107.0838, found 1107.0846; IR (FT-ATR): $v\left(\mathrm{~cm}^{-1}\right) 3331,3074,1678,1565$, $1515,1478,1435,1376,1306,1254,1237,1053,996,867,803,741,669$.

1.3.Phenylalanine Derivatives

(S)-Ac-Phe-OMe, (S)-Piperonyloyl-Phe-OMe ${ }^{[6]}$ and Ac-Phe-NHMe ${ }^{[7]}$ are known compounds and were prepared according to published protocols.

General procedure for the amide bond formation reaction of N-substituted (S)-phenylalanine with 3,4-(methylenedioxy)aniline:

EEDQ (1.05 eq.) was added to a solution of N-substituted (S)-phenylalanine derivative (1.00 eq.) in anhydrous THF. The resulting solution was stirred for 20 min at room temperature and subsequently 3,4-(methylenedioxy)aniline (1.00 eq.) was added. The reaction mixture was stirred for 2 h at room temperature. It then was diluted with DCM and washed with hydrochloric acid (3M) twice, aqueous diluted NaHCO_{3} solution twice and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and all volatiles were removed under reduced pressure.

1.3.1. Compound 9

The reaction was performed according to the general procedure (2.39 mmol scale). The crude product was purified by flash column chromatography (silica, hexanes:EtOAc 1:1 -> 1:5, R_{f} (hexanes:EtOAc 1:1) $=0.35$)

White solid, $187 \mathrm{mg}(24 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,300.18 \mathrm{MHz}, 300 \mathrm{~K}): ~ \delta=1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{1}\right), 2.77-3.03(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}^{5}\right), 4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{18}\right), 6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 6.94\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}\right.$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{13}\right), 7.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 / 8 / 9 / 10 / 11}\right), 7.24-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{7,8,9,10,11,17}\right), 8.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}\right.$, 1H, NH), $9.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,75.49 \mathrm{MHz}, 300 \mathrm{~K}): \delta=22.4\left(\mathrm{C}^{1}\right), 37.9\left(\mathrm{C}^{5}\right), 54.8$ $\left(C^{3}\right), 101.0\left(C^{18}\right), 101.5\left(C^{7 / 8 / 10 / 11}\right), 108.0\left(C^{14}\right), 112.2\left(C^{13}\right), 126.4\left(C^{9}\right), 128.1\left(2 C, C^{7 / 8 / 10 / 11}\right), 129.2(2 C$, $\left.C^{7 / 8 / 10 / 11}\right), 133.2\left(C^{12}\right), 137.7\left(C^{6}\right), 143.0\left(C^{15 / 16}\right), 147.0\left(C^{15 / 16}\right), 169.2\left(C^{2}\right), 170.0\left(C^{4}\right)$; HR-MS (ESI $): ~ m / z$ calc. for ([2M+Na] $\left.{ }^{+},\left[\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Na}\right]^{+}\right):$675.2425, found 675.2432.

1.3.2. Compound 10

The reaction was performed according to the general procedure (1.85 mmol scale). The crude product was purified by flash column chromatography (neutral alumina, DCM:EtOH 100:1, $\left.R_{f}(D C M: E t O H ~ 100: 1)=0.35\right)$.

White solid, $337 \mathrm{mg}(47 \%)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $\left.400.33 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=3.05-3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 4.82$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 5.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{19}\right), 6.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{15}\right), 6.99\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}^{14}\right), 7.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 7.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9 / 10}\right), 7.31\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{18}\right), 7.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9 / 10}\right), 7.44(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}^{2 / 3}\right), 7.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2 / 3}\right), 8.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 10.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (DMSO-d6, $\left.100.67 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=37.2\left(\mathrm{C}^{7}\right)$, $55.7\left(\mathrm{C}^{6}\right)$, $100.9\left(\mathrm{C}^{19}\right)$, $101.5\left(\mathrm{C}^{18}\right)$, 108.0 $\left(C^{15}\right), 112.2\left(C^{14}\right), 126.3\left(C^{11}\right), 127.4\left(2 C, C^{2 / 3}\right), 128.1\left(2 C, C^{9 / 10}\right), 128.2\left(2 C, C^{2 / 3}\right), 129.2\left(2 C, C^{9 / 10}\right), 131.3$ $\left(C^{1}\right), 133.2\left(C^{13}\right), 133.9\left(C^{4}\right), 138.1\left(C^{8}\right), 143.0\left(C^{16 / 17}\right), 147.0\left(C^{16 / 17}\right), 166.4\left(C^{5}\right), 170.0\left(C^{12}\right)$; HR-MS (ESI ${ }^{+}$): m / z calc. for ($[2 \mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{46} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{8}\right]^{+}$): 777.2919, found 777.2941.

1.3.3. Compound 11

The reaction was performed according to the general procedure (1.57 mmol scale). The crude product was purified by flash column chromatography (silica, hexanes:EtOAc 2:1 -> EtOAc, R_{f} (hexanes:EtOAc 2:1) $=0.55$).

White solid, $406 \mathrm{mg}(59 \%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, $400.33 \mathrm{MHz}, 300 \mathrm{~K}$): $\delta=2.98-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{13}\right), 4.97$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{12}\right), 6.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{25}\right), 6.89\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{23}\right), 7.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}^{24}\right), 7.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 7.30-7.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{15 / 16,20}\right), 7.39-7.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{15 / 16}\right), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{4 / 5 / 9 / 10}\right), 7.49-7.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3 / 4 / 5 / 6 / 8 / 9 / 10}\right), 7.86\left(\mathrm{~m}^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3 / 6 / 8 / 10}\right), 7.94\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}\right.$,
$\left.1 \mathrm{H}, \mathrm{H}^{3 / 6 / 8 / 10}\right), 7.98\left(\mathrm{~m}^{3}{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3 / 6 / 8 / 10}\right), 8.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 10.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (DMSO-d6, $\left.100.67 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=37.4\left(\mathrm{C}^{13}\right)$, $55.4\left(\mathrm{C}^{12}\right)$, $101.0\left(\mathrm{C}^{25}\right)$, $101.5\left(\mathrm{C}^{20}\right)$, 108.1 $\left(C^{23}\right), 112.2\left(C^{24}\right), 124.8\left(C^{3 / 4 / 5 / 6 / 8 / 9 / 10}\right), 125.2\left(C^{4 / 5 / 9 / 10}\right), 125.4\left(C^{3 / 6 / 8 / 10}\right), 126.1\left(C^{3 / 4 / 5 / 6 / 8 / 9 / 10}\right), 126.4\left(C^{17}\right)$, $126.5\left(\mathrm{C}^{4 / 5 / 9 / 10}\right), 128.0\left(\mathrm{C}^{3 / 6 / 8 / 10}\right), 128.1\left(2 \mathrm{C}, \mathrm{C}^{15 / 16}\right)$, $129.3\left(2 \mathrm{C}, \mathrm{C}^{15 / 16}\right)$, $129.7\left(\mathrm{C}^{1 / 2 / 7}\right)$, $129.7\left(\mathrm{C}^{3 / 6 / 8 / 10}\right)$, $133.0\left(C^{1 / 2 / 7}\right)$, $133.3\left(C^{19}\right), 134.4\left(C^{1 / 2 / 7}\right), 138.0\left(C^{14}\right), 143.0\left(C^{21 / 22}\right), 147.1\left(C^{21 / 22}\right), 168.6\left(C^{1}\right), 169.9\left(C^{18}\right)$; HR-MS (ESI ${ }^{+}$: m / z calc. for ($[2 \mathrm{M}+\mathrm{Na}]^{+},\left[\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Na}\right]^{+}$): 899.3051, found 899.3038.

1.3.4. Compound 12

N-Piperonyloylphenylalanine methyl ester ($300 \mathrm{mg}, 917 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) was dissolved in a solution of MeNH_{2} in anhydrous $\mathrm{EtOH}(33 \%, 3.4 \mathrm{~mL}, 30$ eq.). The reaction mixture was stirred for 2 h at room temperature upon which a white solid precipitated. All volatiles were removed under reduced pressure.

White solid, 299 mg (quantitative yield); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400.33 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=2.74$ (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=4.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{16}\right), 3.09-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 4.82\left(\mathrm{bm}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 6.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{7}\right), 6.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}^{5}\right), 7.20-7.32\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}^{2,6,12,13,14}\right), \mathrm{NH}$ protons of the amide groups were not observed; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\left(\mathrm{CDCl}_{3}, 100.67 \mathrm{MHz}, 300 \mathrm{~K}\right): \delta=26.5\left(\mathrm{C}^{16}\right), 38.7\left(\mathrm{C}^{10}\right)$, $55.5\left(\mathrm{C}^{9}\right), 101.9\left(\mathrm{C}^{7}\right), 107.9\left(\mathrm{C}^{2 / 14}\right)$, $108.2\left(C^{5}\right), 122.2\left(C^{2 / 14}\right), 127.3\left(C^{6}\right), 127.7\left(C^{1}\right), 128.9\left(2 C, C^{12 / 13}\right), 129.5\left(2 C, C^{12 / 13}\right), 136.8\left(C^{11}\right), 148.2$ $\left(\mathrm{C}^{3 / 4}\right), 151.0\left(\mathrm{C}^{3 / 4}\right), 167.0\left(\mathrm{C}^{8}\right), 171.9\left(\mathrm{C}^{15}\right) ;$ HR-MS (ESI $): \mathrm{m} / \mathrm{z}$ calc. for $\left([2 \mathrm{M}+\mathrm{H}]^{+},\left[\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{8}\right]^{+}\right)$: 653.2606, found 653.2582.

2. NMR Interaction Studies

Interaction studies were performed in anhydrous, degassed CDCl_{3} using J-Young tubes at room temperature. The concentration of rhodium complex 6 was kept constant (6.7 mM) for all experiments. Spectra with varying equivalents of phenylalanine derivatives are depicted below.

2.1.Complex 6 / (S)-Amidoester 7

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

2.2.Complex 6 / (S)-Amidoester 8

${ }^{1} \mathrm{H}$-NMR spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

2.3.Complex 6 / (S)-Diamide 9

${ }^{1} \mathrm{H}$-NMR spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

2.4.Complex 6 / (S)-Diamide 10

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted. The signal at 8.86 ppm in the green spectrum does not correspond to the NH protons.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq green). The ${ }^{1} J_{P-\text { Rh }}$ doublet is depicted.

2.5.Complex 6 / (S)-Diamide 11

${ }^{1} \mathrm{H}$-NMR spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq green). The ${ }^{1} \rho_{P-\text {-R }}$ doublet is depicted.

2.6.Complex 6 / (S)-Diamide 12

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq green). The ${ }^{1} J_{P-R h}$ doublet is depicted.

2.7.Complex 6 / (S)-Diamide 13

${ }^{1} \mathrm{H}$-NMR spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with various equivalents of phenylalanine derivative (0 eq - blue, 2 eq - red, $5 \mathrm{eq}-$ green and 10 eq - purple). The doublet of the two equivalent protons of the $-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}$ moiety is depicted.

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-N M R$ with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq green). The ${ }^{1} J_{P-R h}$ doublet is depicted.

2.8.Complex 6 / (S)-Diamide 13 (50\% ee)

${ }^{1} \mathrm{H}$-NMR spectra with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq - green). The amide NH - region of the complex is depicted.

2.9.Complex 6 / (S)-Diamide 13 (25 and $75 \% e e$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with 10 equivalents of phenylalanine derivative ($25 \% e e-b l u e, 75 \% e e-r e d$). The amide NH - region of the complex is depicted.

2.10. Complex 6 / rac-Diamide 13

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with various equivalents of phenylalanine derivative ($2 \mathrm{eq}-\mathrm{blue}, 5 \mathrm{eq}$ - red and 10 eq - green). The amide NH - region of the complex is depicted.

2.11. Linear Correlation of Splitting and Enantiomeric Excess of Analyte (Complex 6 / Ac-Phe-NHMe)

2.12. [(BIPHEP)Rh(COD)](BF4) / (S)-Diamide 13

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR with various equivalents of phenylalanine derivative (2 eq - blue, 5 eq - red and 10 eq green). The ${ }^{1} J_{P-R h}$ doublet is depicted.

2.13. 5,5'-Bis(3,5-dichlorobenzoylamino)-BIPHEP/ (S)-Diamide 13

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the free ligand in CDCl_{3}. The aromatic region is depicted. Blue: Free ligand. Red: Ligand with 10 eq. (S)-Ac-Phe-NHMe.

3. NMR-spectra

3.1.Cf. 1.1.1

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

3.2.Cf. 1.1.2

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{19} \mathrm{~F}-\mathrm{NMR}$

3.3.Cf. 1.1.3

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

| 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

${ }^{19}$ F-NMR

3.4.Cf. 1.1.4

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$-NMR

${ }^{19}$ F-NMR

3.5.Cf. 1.1.6
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR

${ }^{31} P\left\{{ }^{1} H\right\}-N M R$

3.6.Cf. 1.1.7

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$-NMR
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR

3.7.Cf. 1.1.8

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$-NMR

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

3.8.Cf. 1.1.9

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR

3.9.Cf. 1.1.10

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$

3.10. Cf. 1.1.11

${ }^{1} \mathrm{H}-\mathrm{NMR}$ (NMR spectrum contains trace amounts of residual n-pentane and $\mathrm{Et}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (NMR spectrum contains trace amounts of residual n-pentane and $\mathrm{Et}_{2} \mathrm{O}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR

3.11. Cf. 1.1.12

${ }^{1} \mathrm{H}-\mathrm{NMR}$ (NMR spectrum contains trace amounts of residual n-pentane)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (NMR spectrum contains trace amounts of residual n-pentane)

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.
[2] O. Diels, A. Bibergeil, Ber. dt. chem. Ges. 1902, 35, 302.
[3] N. A. Bondarenko, A. V. Kharlamov, A. G. Vendilo, Russ. Chem. Bull. 2009, 58, 1872.
[4] A. A. Bobrikova, M. P. Koroteev, A. M. Koroteev, Y. V. Nelyubina, E. E. Nifant'ev, Russ. Chem. Bull. 2008, 57, 2021.
[5] D. Camp, P. C. Healy, I. D. Jenkins, B. W. Skelton, A. H. White, J. Chem. Soc., Perkin Trans. 1 1991, 1323.
[6] Z. Fu, J. He, A. Tong, Y. Xie, Y. Wei, Synthesis 2013, 45, 2843.
[7] T. H. Applewhite, C. Niemann, J. Am. Chem. Soc. 1959, 81, 2208.

