Electronic Supplementary Information

A naphthalimide-based [12]ane N_{3} compound as an effective and real-time fluorescence tracking non-virus gene vector

Yong-Guang Gao, ${ }^{\text {a }}$ You-Di Shi, ${ }^{\text {a }}$ Ying Zhang, ${ }^{a}$ Jing Hu, ${ }^{\text {a }}$ Zhong-Lin Lu, ${ }^{\text {a* }}$ Lan He ${ }^{\text {b* }}$

1. Materials and instruments
2. Synthesis
3. Lipoplex formation and analysis
3.1. Agarose gel retardation
3.2 Dynamic light scattering (DLS)
3.3 Scanning electron microscope (SEM) images
4. Biological studies
4.1. In vitro transfection experiments
4.2. Confocal laser scanning microscopy (CLSM)
4.3. Cytotoxicity assay
References
Spectra

1. Materials and instruments

1.1. Materials

Anhydrous ethanol, methanol, tetrahydrofuran (THF), dichloromethane (DCM) and dimethyl formamide (DMF) were dried and purified under nitrogen by using standard methods and were distilled immediately before use. 3,5-bis(azidomethyl)benzoic acid and di-tert-butyl 9-(prop-2-ynyl)-1,5,9-triazacyclododecane-1,5-dicarboxylate (compound 6) were prepared according to the literature. ${ }^{1-2}$ Electrophoresis grade agarose, $6 \times$ loading buffer (30 mM EDTA, 40% glycerol, 0.03% xylene cyanol FF , and 0.05% bromophenol blue), Goldview II, 4,6-diamidino-2-phenylindole (DAPI), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bormide (MTT), plasmid DNA (pUC 18) were purchased from Solarbio Company. Dioleoyl phosphatidyl ethanolamine (DOPE) was from Santa Cruz Biotechnology.Lipofectamine 2000^{TM} and Cy5-labeled double-stranded DNA oligomer 5^{\prime}-GGTCGGAGTCAACGGATTTGGTCG-3'-(Cy5-DNA) were from Invitrogen. Ultrapure milli-Q water ($18.25 \mathrm{M} \Omega$) was used in all DNA condensation assays.

1.2. Instruments

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker Avance III 400 MHz spectrometer at $25^{\circ} \mathrm{C}$. The infrared spectra were taken on a Nicolet 380 spectrometer. Mass spectra were acquired on a Waters Quattro Mocro spectrometer and high resolution mass spectra were acquired on a Waters LCT Premier XE spectrometer. Electrophoresis apparatus was a BG-subMIDI sub marine system (BayGene Biotech Company Limited, Beijing, China). Hydrodynamic diameters were determined using a Brookhaven ZetaPlus Partical Size and Zeta Potential Analyzer. The morphologies of the lipoplexes were observed by $\operatorname{SEM}(a H i t a c h i, ~ X 650)$. Fluorescence spectra were measured on a Varian Cary Eclipse spectrometer.

2 Synthesis

Scheme 1Synthesis of cationic lipid 1

To a stirred solution of the N-butyl-4-bromine-1,8-naphthalimide ($1.0 \mathrm{~g}, 3.0 \mathrm{mmol}$) in 2methoxyethanol (15 mL) was added 1,10-diaminodecane ($2.6 \mathrm{~g}, 15.00 \mathrm{mmol}$). The mixture was refluxed for 24 h and monitored by TLC. After completion, the reaction mixture was cooled to room temperature and concentrated under vacuum until most of the solvent was removed. The residue was washed with water and then purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=5 / 1\right)$ to provide product $0.52 \mathrm{~g}(41 \%) .1 \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.71(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.19(\mathrm{~m}, 18 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 164.16$, 163.31, 151.11, 134.65, 131.00, 129.88, 129.05, 124.54, 122.28, 120.57, 107.90, 104.10, 43.30, $31.43,29.38,29.34,29.27,29.16,28.28,28.04,27.09,26.66,26.55,22.42,14.31$. HR-MS: $\mathrm{m} / \mathrm{z}=$ $424.2957\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

3,5-bis(azidomethyl)benzoic acid ($0.16 \mathrm{~g}, 0.71 \mathrm{mmol})$, EDCI ($0.15 \mathrm{~g}, 0.78 \mathrm{mmol})$, BtOH (0.11 g , $0.78 \mathrm{mmol})$ and DIEA ($0.18 \mathrm{~g}, 1.42 \mathrm{mmol}$) in DMF (10 mL) stirred for 0.5 h , then compound $\mathbf{3}$
$(0.3 \mathrm{~g}, 0.71 \mathrm{mmol})$ was added, and stirred for 4 h . Water $(5 \mathrm{~mL})$ was added and the mixture was extracted with DCM ($2 \times 15 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was evaporated under reduced pressure. The crude material was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=2 / 1)$ to give yellow solid $0.3 \mathrm{~g}(66 \%) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H})$, $7.61(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{brs}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~s}, 4 \mathrm{H}), 4.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 14 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 166.66,164.75,164.21,149.60,136.86,136.11,134.52,131.09,130.27,129.81$, $126.36,126.12,124.60,123.06,120.19,109.98,104.28,77.36,77.10,76.85,54.14,43.74,40.29$, 40.26, 31.64, 29.63, 29.39, 29.38, 29.29, 29.21, 28.86, 28.19, 27.12, 26.93, 26.89, 22.62, 14.15. HR-MS: $\mathrm{m} / \mathrm{z}=660.3386\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

To a solution of the $\mathbf{5}(0.3 \mathrm{~g}, 0.47 \mathrm{mmol})$ and the $\mathbf{6}(0.38 \mathrm{~g}, 0.96 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} / 5 \mathrm{~mL})$ copper sulfate $(8 \mathrm{mg}, 0.047 \mathrm{mmol})$ and $\mathrm{Vc}-\mathrm{Na}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ were added and the mixture was stirred for overnight at room temperature. The solvent removed under reduced pressure. Water 10 mL was added and the mixturewas extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic layerwas washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent wasevaporated under reduced pressure. The crude material was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / 1\right)$ to give yellow solid $0.4 \mathrm{~g}(58 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H})$, $7.31(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 4 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $4 \mathrm{H}), 3.40(\mathrm{~s}, 4 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 16 \mathrm{H}), 2.42(\mathrm{~s}, 8 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 20 \mathrm{H}), 1.62-1.28(\mathrm{~m}, 48 \mathrm{H})$, $0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.17,164.54,163.95,156.14,150.05$, $144.16,136.80,136.33,134.38,130.79,129.74,126.83,124.16,122.64,120.24,109.22,103.93$, $79.15,53.15,49.76,46.69,45.30,43.78,43.56,40.11,39.72,30.20,29.40,29.23,29.15,29.05$,
28.56, 28.56, 28.37, 27.02, 20.27, 13.78; IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3406.33,3121.69,2969.88,2931.93$, $2812.65,1684.94,1646.99,1581.93,1552.11,1476.20,1413.86,1384.04,1365.06,1305.42$, 1243.07, 1169.88, 1050.60, 776.81; ESI-MS: $\mathrm{m} / \mathrm{z}=1456.5\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Compound $7(0.4 \mathrm{~g}, 0.27 \mathrm{mmol})$ was added to a saturated hydrogen chloride solution of ethyl acetate $(10 \mathrm{~mL})$ and the mixture was stirred for 30 minutes at room temperature. The resulting suspension was filtrated and the solid was washed with ethyl acetate, then dried in vacuum at 60 ${ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .0 .3 \mathrm{~g}(83 \%)$ yellow solid was obtained. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.07-7.85(\mathrm{~m}$, $3 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 4 \mathrm{H})$, 3.96-3.68(m, 4H), 3.50(s, 2H), 3.27-2.28(m, 28H), 2.18-1.92(m, 4H), $1.89-1.65(\mathrm{~m}, 8 \mathrm{H})$, 1.26-0.34 (m, 23H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 167.48,164.58,163.66,150.41,136.36,135.99$, $135.29,130.82,129.05,128.44,127.23,124.10,121.08,119.63,107.38,103.38,53.24,48.81$, $47.46,43.27,42.03,41.13,40.73,40.14,29.99,29.20,28.92,28.73,28.24,26.73,20.14,18.83$, 17.99, 13.51; IR (KBr, cm^{-1}): 3419.88, 2929.22, 2853.31, 1638.86, 1576.51, 1543.98, 1459.94, $1392.17,1386.75,1354.22,1243.07,1126.51,581.63 ; H R-M S: m / z=1056.7325\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

3. Lipoplex formation and analysis

3.1. Agarose gel retardation

Lipoplexes at different concentrations were preparedby adding appropriate volume of the lipid (liposome) solution to $0.9 \mu \mathrm{~L}$ of $\mathrm{pUC} 18 \mathrm{DNA}(200 \mu \mathrm{~g} / \mathrm{mL})$ and $4 \mu \mathrm{~L}$ of HEPES $(100 \mathrm{mM}, \mathrm{pH}$ 7.2).Theobtained complex solution was then diluted to the total volume of $20 \mu \mathrm{~L}$. After incubation at $37^{\circ} \mathrm{C}$ for 5 min , the lipoplexes were electrophoresed on a $0.7 \%(\mathrm{w} / \mathrm{v})$ agarose gel containing GelRedTM in Tris-acetate (TAE) running buffer at 120 V for 40 min . Then DNA was visualized under an ultraviolet lamp using a Vilber Lourmat imaging system.

3.2 Dynamic light scattering (DLS)

The liposome/DNA complexes with various concentrations were prepared by adding $0.9 \mu \mathrm{~L}$ of
pUC18 DNA $(200 \mu \mathrm{~g} / \mathrm{mL})$ to the appropriate volume of the liposome solution. Then the complex solution was vortexed for 30 s before being incubated at $37^{\circ} \mathrm{C}$ for 5 min andthen diluted up to 1 mL by ultrapurity water solution prior to be measured. Data were shown asmean \pm standard deviation (SD) based on three independent measurements.

Fig. S1 Hydrodynamic diameter distributions of pUC18 DNA particles condensed by complexes of 1 withDOPEat different concentrations by DLS. The molar ratio of lipid1/DOPE was 1:2. The DNA concentration is $9 \mu \mathrm{~g} / \mathrm{mL}$

3.3 Scanning electron microscope (SEM) images

$0.9 \mu \mathrm{~L}$ of pUC 18 DNA ($200 \mu \mathrm{~g} / \mathrm{mL}$) was mixed with the appropriate volume of liposome $\mathbf{1}$ solution to form complexes, diluted by water to a total volume of $20 \mu \mathrm{~L}$, and incubated at $37{ }^{\circ} \mathrm{C}$ for 5 min . The lipoplexes was added dropwise to the silicon slice. The slice was dried at room temperature at atmosphericpressure for several hours before observation.

4. Biological studies

4.1. In vitro transfection experiments

Gene transfection of liposome 1 was investigated in A549 cells. Cells were seeded in 24-well plates (8×10^{4} cells/well) and grown to reach $70-80 \%$ cell confluence at $37{ }^{\circ} \mathrm{C}$ for 24 h in 5% CO_{2}. Before transfection, the medium was replaced with a serum-free DMEM culture medium
containing liposome/DNA complexes at various concentrations. After 4 hunder standard incubator conditions, the medium was replaced with fresh medium containingserum and incubated for another 20 h .

4.2. Confocal laser scanning microscopy (CLSM)

The cellular uptake of Cy5-labeled dsDNA condensates was observed by fluorescence microscope. A549 cells were cultured in DMEM medium supplemented with 10% FBS in a humid atmosphere containing $5 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$. The cells were seeded in Glass Bottom Cell Culture Dishes at 1000 cells per dish and cultured for 24 h . After washed three times with DMEM, the cells were treated with freshly prepared Cy5-DNA condensates and the controls $(500 \mu \mathrm{~L})$. The blue fluorescence dye DAPI ($5 \mu \mathrm{~g} / \mathrm{mL}$) was also added to each dish for nuclear staining, after that the cells were cultured for 4 h (or different hours). Finally, the cells were washed for 6 times with PBS buffer, observed using a Zeiss Inverted Fluorescence Microscope with a $40 \times$ objective and DAPI filter for DAPI (blue), GFP filter for lipid 1 (green), and Rhodamine filter for Cy5 (red), respectively.

4.3.Cytotoxicity assay

The cytotoxicity of lipoplex 1 toward A549 cell lines were tested by MTT assays (MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). The cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with fetal bovine serum (FBS, $10 \%, \mathrm{v} / \mathrm{v}$) in a humid atmosphere containing $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. After 48 h of incubation in the medium, the cells were seeded in 96 -well plates at 5000 cells and $100 \mu \mathrm{~L}$ medium per well and cultured for another 24 h . Then the cells were treated with different concentrations of $\mathbf{1}$ in $100 \mu \mathrm{~L}$ DMEM, $100 \mu \mathrm{~L}$ DMEM with 10% FBS was added to each well 4 h later, and cells were further cultured for 20 h . After that the medium was removed and $20 \mu \mathrm{~L}$ of MTT $(5 \mathrm{mg} / \mathrm{mL})$ was added to wells, the cells were incubated for another 4 h . Finally MTT was replaced with $200 \mu \mathrm{~L}$ of DMSO, the plates were oscillated for 10 min to fully dissolve the formazan crystal formed by living cells in the wells. The absorbance of the purple formazan was recorded at 490 nm using a Thermo Scientific Multiskan GO. The relative viability of the cells was calculated based on the data of five parallel tests by comparing to the controls.

References

1.H.Y. Kuchelmeister and C. Schmuck. Eur. J. Org. Chem., 2009, 2009, 4480.
2.Z.-F. Guo, H. Yan, Z.-F. Li and Z.-L. Lu. Org. Biomol. Chem., 2011, 9, 6788.

Spectra

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =100.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=2$
Monoisotopic Mass, Even Electron Ions
126 formula(e) evaluated with 1 results within limits (up to 100 closest results for each mass) Elements Used:
C: 0-40 H: 0-40 N: 0-5 O: 0-5
gyg-136 20 (0.344)
TOF MS ES +

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} /$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=2$
Monoisotopic Mass, Even Electron lons
7367 formula(e) evaluated with 34 results within limits (up to 50 closest results Elements Used:
C. 0-100 H:

GYG-145 8 (0.148)
TOF MS ES+
$1.94 \mathrm{e}+003$

