Electronic supplementary information

Host-guest Complexation of Pillar[6]arene towards Neutral Nitrile Guests

Mao-Sen Yuan,^a Huanqing Chen,^b Xianchao Du,^a Jian Li,^b Jinyi Wang,^{*a} Xueshun Jia^{* b,c} and

Chunju Li*^b

^a College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China. E-mail: jywang@nwsuaf.edu.cn.

^b Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China. E-mail: cjli@shu.edu.cn, xsjia@mail.shu.edu.cn.

^c State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P.R. China

Contents

Materials and methods.	S2
Copies of ¹ H NMR and ¹³ C NMR spectra of EtP6A host.	S 3
¹ H NMR spectra of guests in the absence and presence of EtP6A.	S4
UV-vis spectra.	S6
Crystal structure of 5 ⊂EtP6A complex and the C–H…N(O, π) parameters.	S7
Determination of the association constants.	S 8
References.	S 9

Materials and methods.

All of the guests were commercially available and used as received. EtP6A^[S1] host was prepared according to literature procedures. ¹H NMR, ¹³C NMR and 2D NOESY spectra were recorded on a Bruker AV500 instrument.

X-ray crystal data of 5⊂EtP6A complex.

Crystallographic data: colorless, $C_{76}H_{92}N_2O_{12}$, FW 1225.51, Monoclinic, space group P 21/n, a=11.966 (3), b=12.944 (4), c=21.641 (6), $\alpha = 90^{\circ}$, $\beta = 90.390$ (5)°, $\gamma = 90^{\circ}$, V=3351.9 (16) Å³; Z=2, D_c=1.214 g cm⁻³; T=173(2) K, $\mu = 0.081$ mm⁻¹; 12619 measured reflections, 5823 independent reflections, 412 parameters, 0 restraint, F(000)=1316, R1=0.1072, wR2 = 0.2138 (all data), R1=0.0632, wR2 = 0.1735 [I>2\sigma(I)], max. residual density 0.465 e·Å⁻³; and goodness-of-fit (F²) =1.025. CCDC 1417657.

Copy of ¹H NMR and ¹³C NMR spectra of EtP6A host.

Figure S1. ¹H NMR spectrum (500MHz) of EtP6A in CDCl₃.

Figure S2. ¹³C NMR spectrum (125MHz) of EtP6A in CDCl₃.

¹H NMR spectra of guests in the absence and presence of EtP6A.

Figure S3. ¹H NMR spectra (500 MHz) of (a) 1, (b) 1+EtP6A, (c) 2, (d) 2 + EtP6A, (e) 3, and

(f) $\mathbf{3}$ + EtP6A in CDCl₃ at 4.5–5.0 mM.

Figure S4. ¹H NMR spectra (500 MHz) of (a) 4 and (b) 4 + EtP6A in CDCl₃ at 4.4–4.7 mM.

Figure S5. ¹H NMR spectra (500 MHz, 298 K) of (a) 7 and (b) 7+ EtP6A in CDCl₃ at 4.6–5.0 mM.

Figure S6. ¹H NMR spectra (500 MHz) of (a) **10**, (b) **10** + EtP6A, (c) **11**, and (d) **11** + EtP6A in CDCl₃ at 4.4–4.9 mM.

Figure S7. UV-*vis* spectra of EtP6A, guest 5, and 1:1 mixture of EtP6A and 5 in CHCl₃. Left: The concentration is 3.0×10^{-5} mol/L for the left graph, and 3.0×10^{-3} mol/L for the right one.

Crystal structure of $5 \subseteq$ EtP6A complex and the C–H…N(O, π) parameters.

Figure S8. Crystal structure of the inclusion complex **5**⊂EtP6A. EtP6A is gray, guest **5** is sky blue, oxygens are red, and nitrogens are pink. Dashes represent C–H…N(O) hydrogen bonds or C–H… π interactions. C–H…N hydrogen bonds parameters: H…N distances (Å), C–H…N angles (deg) A, 3.284, 110.620; B, 3.475, 132.178; C, 2.732, 133.608; D, 3.477, 82.125; E, 3.417, 110.620. C–H…O hydrogen-bond parameters: H…O distances (Å), C–H…O angles (deg) F, 2.756, 164.078; G, 3.403, 141.262; H, 3.312, 142.022; I, 2.726, 153.420. C–H… π parameters: H…ring centre distance (Å), C–H…ring angles (deg) J, 3.142, 146.474; K, 3.148, 98.270; L, 2.902, 114.405.

Determination of the association constants.

To determine the association constant (K_a), NMR titrations were done with solutions which had a constant concentration of EtP6A and varying concentrations of guest. Using the nonlinear curve-fitting method, the association constant was obtained for the host-guest combination from the following equation^[S2]:

$$A = (A_{\infty}/[EtP6A]_0) \ (0.5[G]_0 + 0.5([EtP6A]_0 + 1/K_a) - (0.5 \ ([G]_0^2 + (2[G]_0(1/K_a - [EtP6A]_0)) + (1/K_a + [EtP6A]_0)^2)^{0.5}))$$

Where *A* is the chemical shift change of the aromatic protons on EtP6A host at $[G]_0$, A_∞ is the chemical shift change of the aromatic protons when the host is completely complexed, $[EtP6A]_0$ is the fixed initial concentration of the host, and $[G]_0$ is the initial concentration of guest.

Figure S9. Partial ¹H NMR spectra (500 MHz, in CDCl₃ at 296 K) of EtP6A at a concentration of 1.01 mM upon addition of **5**. From bottom to top, the concentration of **5** was 0, 0.85, 2.5, 5.7, 8.7, 14, 19, 27, 37, 49 and 66 mM.

Figure S10. The non-linear curve-fitting (NMR titrations) for the complexation of EtP6A host (1.0 mM) with **5** in CDCl₃ at 296 K. The concentration of **5** was 0.85, 2.5, 5.7, 8.7, 14, 19, 27, 37, 49 and 66 mM.

References.

[S1] (a) D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier, *Angew. Chem., Int. Ed.*, **2009**, 48, 9721; (b) X.-B. Hu, Z. Chen, L. Chen, L. Zhang, J.-L. Hou and Z.-T. Li *Chem. Commun.*, **2012**, 48, 10999; (c) Y. Ma, X. Chi, X. Yan, J. Liu, Y. Yao, W. Chen, F. Huang, and
J.-L. Hou, *Org. Lett.*, **2012**, *14*, 1532.

[S2] (a) K. A. Connors, Binding Constants; Wiley: New York, 1987. Corbin, P. S. Ph.D.
Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; (b) R. P. Ashton,
R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M.
V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi , D. J. Williams, *J. Am. Chem. Soc.*,
1996, *118*, 4931; (c) Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao, Z.-J. Hou, L.-H.
Tong, S.-K. Jiang, H.-M. Wu, *J. Chem. Soc.*, *Perkin Trans.* 2, 1998, 1807.