Supporting information

A Stereoselecitve Construction of E - and Z- Δ-Ile from E-Dehydroamino Acid Ester: the Synthesis of Phomopsin A Tripeptide Side Chain
Yoko Yasuno, Akito Nishimura, Yoshifumi Yasukawa, Yuma Karita, Yasufumi Ohfune and Tetsuro Shinada*
Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

General.

All reagents and solvents were purchased from either Aldrich Chemical Company, Inc., Kanto Kagaku Co., Inc., Merck \& Co., Inc., Nacalai Tesque Company, Ltd., Peptide Institute, Tokyo Kasei Kogyo Co., Ltd., or Wako Pure Chemical Industries, Ltd., and used without further purification unless otherwise indicated. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from phosphoric pentaoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$. Tetrahydrofuran (THF), chloroform $\left(\mathrm{CHCl}_{3}\right)$, and dimethylformamide (DMF) of anhydrous grade were used.

Optical rotations were taken on a JASCO P-1030 polarimeter with a sodium lamp (D line). Melting points were determined with a Yanaco MP-21 melting point apparatus and were uncorrected. FTIR spectra were measured on a JASCO FT/IR-6200 infrared spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on an either Bruker AVANCE 300 (300 MHz), JEOL JNM-LA 400 (400 MHz), or Bruker AVANCE 600 (600 MHz) spectrometer. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR were reported in perts per million (ppm, δ) relative to $\mathrm{CHCl}_{3}(\delta=7.26)$ in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{HOD}(\delta=3.31) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on an either Bruker AVANCE 300 (75 MHz), JEOL JNM-LA $400(100 \mathrm{MHz}$), or Bruker AVANCE $600(150 \mathrm{MHz})$ spectrometer. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR were reported in ppm (δ) relative to $\mathrm{CHCl}_{3}\left(\delta=77.0\right.$) in CDCl_{3}. Low resolution mass spectra (LRMS) and high resolution mass spectra (HRMS) were obtained on an JEOL JMS-AX500 for fast atom bombardment ionization (FAB), chemical ionization (CI), or electron ionization (EI). All reactions were monitored by thin layer chromatography (TLC), which was performed with precoated plates (silica gel 60 F-254, 0.25 mm thickness, manufactured by Merck). TLC visualization was accompanied using UV lamp (254 nm) or a charring solution (ethanoic phosphomolybdic acid, aqueous potassium permanganate and butanoic ninhydrin). Daisogel IR-60 1002W ($40 / 63 \mu \mathrm{~m}$) was used for flash column chromatography on silica gel.
Compounds 7, 9, and 23 were obtained as an inseparable mixture. Amide rotamers are observed in compounds 7~9 and 18~23 under the NMR analysis conditions. These NMR signals are broaden and complicated. Therefore, NMR data assignments are not given for these compounds. Instead, actual spectra are provided.

Methyl 2-(((benzyloxy)carbonyl)amino)pent-2-enoate (11)

To a solution of $3^{1}(502 \mathrm{mg}, 1.10 \mathrm{mmol})$ and $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(258 \mathrm{mg}, 1.00 \mathrm{mmol})$ in THF (10 mL) was added DBU ($150 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$, then propionaldehyde ($76 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 95 \%$ purity) was added to the mixture. The mixture was stirred for 12 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine (30 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=20: 1$ to $7: 1)$ to give a E / Z mixture of $\mathbf{1 1}(229 \mathrm{mg}, 87 \%, E: Z=88: 12)$ as a colorless oil. The E / Z ratio was determined by comparison of the chemical shift values of the olefinic (E : $6.79 \mathrm{ppm}, \mathrm{Z}: 6.63 \mathrm{ppm})$ and $\mathrm{N}-\mathrm{H}(E: 6.79 \mathrm{ppm}, \mathrm{Z}: 6.15 \mathrm{ppm})$ protons. ${ }^{2}$ NMR data of $E / Z \mathbf{- 1 1}$ were identical to those of the reported data. ${ }^{3}$

(Z)-Methyl 2-((benzyloxy)carbonyl)amino)-3-iodopent-2-enoate (Z-12)

To a solution of $\mathbf{1 1}(229 \mathrm{mg}, 870 \mu \mathrm{~mol}, E: Z=88: 12)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.7 \mathrm{~mL})$ was added NIS (234 $\mathrm{mg}, 1.04 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred at room temperature for 2 h . DABCO (195 $\mathrm{mg}, 1.74 \mathrm{mmol}$) was added to the mixture at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at room temperature and quenched with $1 N \mathrm{NaHSO}_{4}(10 \mathrm{~mL})$. The organic layer was separated. The aqueous layer was extracted with EtOAc (10 mL $\times 2$). The combined organic layers were washed with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}(30 \mathrm{~mL})$ and brine (30 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=15: 1$) to give $\mathbf{Z - 1 2}$ (292 mg, 86\%).

White solid;
mp 75-77 ${ }^{\circ} \mathrm{C}$;
FTIR (neat) 3318, 2973, 2952, 1726, 1622, 1481, 1304, 1267, 1220, $1039 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{MR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.32 (m, 5 H), 6.41 (brs, 1 H), 5.14 (s, 2 H), 3.82 (brs, 3 H), 2.76 (brq, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.6,153.2,135.4,130.6,128.5,128.3,128.2,109.3,67.7,52.5,33.8,14.8 ;$

HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{INO}_{4} \mathrm{~m} / \mathrm{z} 390.0202[\mathrm{M}+\mathrm{H}]^{+}$, found 390.0201.

According to the same procedure, $E-11(156 \mathrm{mg}, 593 \mu \mathrm{~mol})$ purified from the 88:12 E/Z-mixture of $\mathbf{1 1}$ by repeating silicagel column chromatography was subjected to the iodination reaction to give $\mathrm{Z} \mathbf{- 1 2}$ (191 mg, 83\%). Spectroscopic data of the resulting Z-12 was identical with those of Z-12 described above.

According to the same procedure, $Z-11(157 \mathrm{mg}, 596 \mu \mathrm{~mol})$ purified from the $88: 12$ mixture of E/Z-11 by repeating silicagel column chromatography was subjected to the iodination reaction to give $Z-12$ ($172 \mathrm{mg}, 74 \%$). Spectroscopic data of the resulting $Z-12$ was identical with those of $Z-12$ described above.
(E)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-methylpent-2-enoate (E-13)

To a solution of $\mathbf{Z - 1 2}(20.0 \mathrm{mg}, 51.4 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.8 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ in THF $(0.5 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{Zn}\left(100 \mu \mathrm{~L}, 102 \mu \mathrm{~mol}, 1.02 \mathrm{M}\right.$ solution in hexane) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 13 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and extracted with EtOAc ($5 \mathrm{~mL} \times$ 3). The combined organic layers were washed with brine (15 mL), dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=12: 1$ to $3: 1$) to give $E-13(13.2 \mathrm{mg}, 93 \%)$ as a $7: 2$ mixture of rotamers. Stereochemistry of $E-\mathbf{1 3}$ was determined by NOESY analysis shown in P13. ${ }^{13} \mathrm{C}$ NMR of $E-13$ was identical with that of the reported data. ${ }^{4}$

White solid;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33$ (m, 5 H), 5.95 (brs, 7/9H), 5.64 (brs, 2/9H), 5.14 (s, 2 H), 3.74 (brs, 21/9H), 3.53 (brs, 6/9H), 2.52 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.86 (s, 3 H), 1.10 (brt, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9,154.4,149.7,136.0,128.1,127.74,127.68,120.7,66.6,51.3,27.2$, 19.0, 12.3.

(Z)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-iodobut-2-enoate (Z-15)

According to the literature, ${ }^{2} 14(E: Z=78: 22)$ was prepared by condensation of 3 and acetaldehyde. To a solution of $14^{2}(10.0 \mathrm{mg}, 40.1 \mu \mathrm{~mol}, E: Z=78: 22)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added NIS ($10.8 \mathrm{mg}, 48.0 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred at room temperature for 2 h . DABCO ($8.97 \mathrm{mg}, 80.0 \mu \mathrm{~mol}$) was added to the mixture at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 7 h at room temperature. The reaction was quenched with $1 \mathrm{~N} \mathrm{NaHSO}_{4}(5 \mathrm{~mL}$) and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layers were washed with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$ and brine (15 mL), dried over anhydrous MgSO_{4}, and filtered. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=15: 1$ to 3 : 1) to give Z-15 (9.5 mg, 63\%).

White solid;
FTIR (neat) 3324, 2952, 1724, 1626, 1483, 1305, 1229, $1049 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ (m, 5 H), 6.35 (brs, 1 H), 5.14 (s, 2 H), 3.81 (brs, 3 H), 2.76 (s, 3 H);
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.4,153.4,135.5,131.2,128.6,128.4,128.3,101.1,67.8,52.6,29.1$;
HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{INO}_{4} \mathrm{~m} / \mathrm{z} 374.9968$ [M $]^{+}$, found 374.9977.

(Z)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-methylpent-2-enoate (Z-13)

To a solution of Z-15 ($28.9 \mathrm{mg}, 77.0 \mu \mathrm{~mol}$), Pd-PEPPSI ${ }^{\mathrm{TM}}-\operatorname{IPr}(2.7 \mathrm{mg}, 3.85 \mu \mathrm{~mol}$, 98% purity) and TMEDA $(46 \mu \mathrm{~L}, 308 \mu \mathrm{~mol})$ in THF $(770 \mu \mathrm{~L})$ was added $\mathrm{Et}_{2} \mathrm{Zn}(154 \mu \mathrm{~L}, 154 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ solution in hexane) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 20 min at reflux, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (15 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$ to $6: 1$) to give Z-13 (20.8 $\mathrm{mg}, 98 \%$) as a $3: 1$ mixture of rotamers. Stereochemistry of $\mathbf{Z - 1 3}$ was determined by NOESY analysis shown in P14. ${ }^{13} \mathrm{C}$ NMR of Z -13 was identical with that of the reported data. ${ }^{4}$

White solid;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33$ (m, 5 H), 5.88 (brs, 3/4H), 5.65 (brs, 1/4H), 5.14 (s, 2 H), 3.74 (brs, 9/4H), 3.51 (brs, 3/4 H), 2.24 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.12 (s, 3 H), 1.04 (brt, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,154.9,150.6,136.2,128.1,127.7,120.5,66.7,51.4,28.1,18.2,11.2$.

(2S)-tert-Butyl 2-((1-(diphenoxyphosphoryl)-2-methoxy-2-oxoethyl)carbamoyl)-2,5-dihydro-1H-

 pyrrole-1-carboxylate (7)

To a solution of $\mathbf{3}^{1}(1.00 \mathrm{~g}, 2.20 \mathrm{mmol})$ in EtOAc (20 mL) was added methanolic HCl prepared from methanol (7.3 mL) and $\mathrm{AcCl}(1.2 \mathrm{~mL}, 16.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C} .10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 10 \mathrm{wt} \%)$ was then added to the mixture. The mixture was stirred under hydrogen for 3.5 h at room temperature and filtrated through a thin Celite ${ }^{\circledR}$ pad. The filtrate was concentrated under reduced pressure to give crude ammonium salt 17 which was subjected to the next acylation without further purification. $\mathbf{6}^{5}$ ($422 \mathrm{mg}, 1.98 \mathrm{mmol}$), DMAP ($134 \mathrm{mg}, 1.10 \mathrm{mmol}$), and EDCI ($464 \mathrm{mg}, 2.42 \mathrm{mmol}$) were added to a solution of the crude 17 in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}\left(2: 1,21 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 13 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(25 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (75 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc $=$ $5: 1$ to $1: 1$) to give 7 ($618 \mathrm{mg}, 55 \%$ over 2 steps) as a $1: 1$ inseparable mixture of diastereomers.

Colorless amorphous solid;
FTIR (neat) 3278, 3064, 2978, 2931, 2869, 1750, 1696, 1590, 1524, 1149, 1456, 1436, 1401, 1366, 1311, 1281, 1205, 1181, 1162, 1119, 1025, $1009 \mathrm{~cm}^{-1}$;

HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P} \mathrm{m/z} 517.1740[\mathrm{M}+\mathrm{H}]^{+}$, found 517.1746.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra: see $\mathrm{P} 15 \sim 16$.
(S,E)-tert-Butyl 2-((1-methoxy-1-oxopent-2-en-2-yl)carbamoyl)-2,5-dihydro-1H-pyrrole-1-carboxylate (E-18) and (S,Z)-tert-Butyl 2-((1-methoxy-1-oxopent-2-en-2-yl)carbamoyl)-2,5-dihydro-1H-pyrrole-1carboxylate (Z-18)

To a solution of $7(618 \mathrm{mg}, 1.20 \mathrm{mmol})$ and $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(340 \mathrm{mg}, 1.32 \mathrm{mmol})$ in THF (13 mL) was added DBU ($181 \mu \mathrm{~L}, 1.32 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. Propionaldehyde ($100 \mu \mathrm{~L}, 1.32 \mathrm{mmol}, 95 \%$ purity) was added to the mixture. The mixture was stirred for 13 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (45 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography
on silica gel (hexane/EtOAc $=7: 1$ to $1: 1$) to give 18 ($354 \mathrm{mg}, 91 \%, E: Z=74: 26$). The E / Z ratio was determined by comparison of the chemical shift values of olefinic proton ($E: 7.12 \mathrm{ppm}, \mathrm{Z}: 6.68 \mathrm{ppm}$). ${ }^{2} E$ and Z-18 was partly separated by flash column chromatography on silica gel repeatedly (hexane/EtOAc $=7$: 1 to $1: 1$);

E-18:
Colorless sticky oil, as a 4:3 mixture of rotamers;
$[\alpha]_{\mathrm{D}}{ }^{20}=-111.7\left(c 2.36, \mathrm{CHCl}_{3}\right)$;
FTIR (neat) 3351, 2976, 2034, 2873, 1681, 1521, 1436, 1392, 1366, 1317, 1245, 1220, 1164, $1125 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR spectrum: see P 17 .
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 168.7,164.2,154.7,153.8,134.7,127.6,126.1,123.7,80.7,69.4,68.4,53.7$, 52.0, 28.0, 21.5, 13.8;

HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 325.1763[\mathrm{M}+\mathrm{H}]^{+}$, found 325.1752.
Z-18:
White solid, as a $2: 1$ mixture of rotamers;
mp 44-45 ${ }^{\circ} \mathrm{C}$;
$[\alpha]_{\mathrm{D}}{ }^{21}=-205.2\left(c\right.$ 1.03, $\left.\mathrm{CHCl}_{3}\right)$;
FTIR (neat) 3279, 2974, 2935, 2874, 1682, 1504, 1437, 1394, 1366, 1312, 1275, 1249, 1173, 1126, 1085 cm^{-1};
${ }^{1} \mathrm{H}$ NMR spectrum: see P19.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,164.6,154.9,154.1,140.4,139.8,127.7,126.3,126.0,124.2,123.4$, 80.9, 69.0, 67.7, 53.9, 52.1, 28.0, 22.2, 21.9, 12.5;

HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 325.1763[\mathrm{M}+\mathrm{H}]^{+}$, found 325.1758.
(S,Z)-tert-Butyl
2-((3-iodo-1-methoxy-1-oxopent-2-en-2-yl)carbamoyl)-2,5-dihydro-1H-pyrrole-1carboxylate (19)

To a solution of $18(638 \mathrm{mg}, 2.78 \mathrm{mmol}, E: Z=74: 26)$ in $\mathrm{CHCl}_{3}(11 \mathrm{~mL})$ was added NIS (490 $\mathrm{mg}, 2.18 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 3 h . DABCO ($611 \mathrm{mg}, 5.45$ mmol) was added to the mixture at room temperature. The mixture was stirred for 11 h and quenched with $1 N \mathrm{NaHSO}_{4}(15 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc (15 $\mathrm{mL} \times 2$). The combined organic layers were washed with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}(45 \mathrm{~mL})$ and brine (45 mL), dried over
anhydrous MgSO_{4}, and filtered. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = $5: 1$ to $3: 1$) to give $\mathbf{1 9}$ ($364 \mathrm{mg}, 74 \%$) as a $2: 1$ mixture of rotamers.
Colorless amorphous solid;
$[\alpha]_{\mathrm{D}}{ }^{17}=-117.3\left(c 1.47, \mathrm{CHCl}_{3}\right)$;
FTIR (neat) 3278, 2976, 2933, 2871, 1730, 1697, 1621, 1480, 1433, 1395, 1366, 1293, 1258, 1220, 1166, 1124, $1082 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR spectrum: see P21.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,161.4,155.4,154.0,130.8,130.0,128.1,127.6,125.9,109.7,81.4,68.8$, 67.2, 54.0, 52.5, 33.5, 28.2, 14.8;

HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{IN}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 451.0730[\mathrm{M}+\mathrm{H}]^{+}$, found 451.0729.

According to the same procedure, $E-18(32.0 \mathrm{mg}, 98.7 \mu \mathrm{~mol})$ and $Z-18(29.5 \mathrm{mg}, 90.9 \mu \mathrm{~mol})$ were converted to 19, respectively [$35.0 \mathrm{mg}, 79 \%$ from $E-18 ; 21.0 \mathrm{mg}, 51 \%$ from Z-18].

(S,E)-tert-Butyl
 2-((1-methoxy-3-methyl-1-oxopent-2-en-2-yl)carbamoyl)-2,5-dihydro-1H-pyrrole-1-

 carboxylate (8)

To a solution of $19(840 \mathrm{mg}, 1.87 \mathrm{mmol})$ and Pd-PEPPSI ${ }^{\mathrm{TM}}-\mathrm{IPr}(38.8 \mathrm{mg}, 56.0 \mu \mathrm{~mol}, 98 \%$ purity) in THF (19 mL) was added $\mathrm{Me}_{2} \mathrm{Zn}\left(3.8 \mathrm{~mL}, 3.73 \mathrm{mmol}, 0.99 \mathrm{M}\right.$ solution in hexane) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 1 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and extracted with EtOAc ($20 \mathrm{~mL} \times 3$). The combined organic layers were wash with brine (60 mL), dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=5: 1$ to $1: 1$) to give $\mathbf{8}(597 \mathrm{mg}, 94 \%)$ as a $5: 4$ mixture of rotamers;
Colorless sticky oil;
$[\alpha]_{D}{ }^{18}=-188.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$;
FTIR (neat) 3277, 2978, 2874, 1675, 1508, 1433, 1396, 1367, 1306, 1268, 1218, 1173, 1125, $1106 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR spectrum: see P23.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,164.6,155.2,154.4,151.3,147.7,127.3,126.7,126.1,120.7,119.9$, 81.1, 69.1, 67.3, 54.1, 51.6, 28.2, 27.5, 19.7, 19.1, 12.6;

HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 339.1920[\mathrm{M}+\mathrm{H}]^{+}$, found 339.1917.
(S,E)-tert-Butyl 2-((1-(allyloxy)-3-methyl-1-oxopent-2-en-2-yl)carbamoyl)-2,5-dihydro-1H-pyrrole-1carboxylate (20)

To a solution of $\mathbf{8}(169 \mathrm{mg}, 499 \mu \mathrm{~mol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,5.0 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(105$ $\mathrm{mg}, 2.50 \mathrm{mmol})$. The mixture was stirred for 14 h at $50{ }^{\circ} \mathrm{C}$, quenched with $1 N \mathrm{HCl}(10 \mathrm{~mL})$. The pH of the solution was adjusted to acidity ($\mathrm{pH} 1-2$). The aqueous layer was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The resulting carboxylic acid was subjected to the next esterification without further purification. To a solution of crude carboxylic acid in DMF (5.0 mL) were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(163 \mathrm{mg}, 501$ $\mu \mathrm{mol})$ and allyl bromide ($51 \mu \mathrm{~L}, 601 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3.5 h at room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with hexane/EtOAc ($1: 1,10 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (30 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=7: 1$ to $3: 1$) to give $\mathbf{2 0}$ ($156 \mathrm{mg}, 86 \%$ over 2 steps) as a $5: 4$ mixture of rotamers.

White solid;
mp 111-113 ${ }^{\circ} \mathrm{C}$;
$[\alpha]_{D}{ }^{21}=-2.7\left(c 1.15, \mathrm{CHCl}_{3}\right) ;$
FTIR (neat) 3289, 2978, 2935, 2874, 1700, 1508, 1456, 1398, 1366, 1303, 1261, 1201, 1173, 1125, 1107 cm^{-1};
${ }^{1} \mathrm{H}$ NMR spectrum: see P25.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,163.8,155.1,154.4,151.5,148.1,132.0,127.3,126.6,126.1,120.8$, 119.9, 118.3, 117.9, 81.1, 69.0, 67.3, 65.3, 54.0, 28.2, 27.5, 19.8, 19.1, 12.6;

HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{z} 365.2076[\mathrm{M}+\mathrm{H}]^{+}$, found 365.2069.

(S,E)-tert-Butyl 2-((1-(allyloxy)-3-methyl-1-oxopent-2-en-2-yl)

(tert-butoxycarbonyl)carbamoyl)-2,5-dihydro-1H-pyrrole-1-carboxylate (21)

To a solution of $20(156 \mathrm{mg}, 428 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$ were added $\mathrm{Boc}_{2} \mathrm{O}(200 \mu \mathrm{~L}, 858$ $\mu \mathrm{mol}$) and DMAP ($52.4 \mathrm{mg}, 429 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc = $20: 1$ to $10: 1$) to give 21 (201 mg , quant.) as a colorless sticky oil;
$[\alpha]_{\mathrm{D}}{ }^{21}=-1.7\left(c 1.09, \mathrm{CHCl}_{3}\right)$;
FTIR (neat) 3419, 3087, 2978, 2935, 2871, 1722, 1701, 1648, 1458, 1402, 1368, 1294, 1257, 1225, 1203, 1154, 1129, 1107, $1058 \mathrm{~cm}^{-1}$;
HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~m} / \mathrm{z} 465.2601[\mathrm{M}+\mathrm{H}]^{+}$, found 465.2586.
NMR spectra: see P27~28.

(2S)-tert-Butyl 2-((tert-butoxycarbonyl)((E)-1-((1-(diphenoxyphosphoryl)-2-methoxy-2-oxoethyl)

 amino)-3-methyl-1-oxopent-2-en-2-yl)carbamoyl)-2,5-dihydro-1H-pyrrole-1-carboxylate (9)

To a solution of $21(162 \mathrm{mg}, 349 \mu \mathrm{~mol})$ in THF (3.5 mL) were added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(40.3 \mathrm{mg}, 34.9$ $\mu \mathrm{mol}$) and morpholine ($300 \mu \mathrm{~L}, 3.49 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at room temperature, quenched with $1 N \mathrm{HCl}(10 \mathrm{~mL})$, and extracted with EtOAc $(10 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure to give carboxylic acid 22 which was subjected to the next reaction without further purification. The crude 22 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$, EDCI ($110 \mathrm{mg}, 575 \mu \mathrm{~mol}$), and DMAP ($32.0 \mathrm{mg}, 262 \mu \mathrm{~mol}$) were subsequently added to a solution of α-(diphenylphosphono)glycine ammonium salt 17 in DMF (1.2 mL) prepared form $\mathbf{3}^{1}$ (238 mg , $523 \mu \mathrm{~mol}$), $10 \% \mathrm{Pd} / \mathrm{C}(23.8 \mathrm{mg}, 10 \mathrm{wt} \%)$, $\mathrm{AcCl}(280 \mu \mathrm{~L}, 3.92 \mathrm{mmol})$, and $\mathrm{MeOH}(1.2 \mathrm{~mL}) \mathrm{in} \mathrm{EtOAc}(3.5$ mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 15 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (5 mL), and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (15 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=10: 1$ to $1: 1$) to give 9 (143 $\mathrm{mg}, 56 \%$ over 2 steps) as a $1: 1$ mixture of diastereomers;

Colorless sticky oil.
FTIR (neat) 3320, 3009, 2979, 2934, 2871, 1739, 1681, 1591, 1489, 1405, 1369, 1288, 1256, 1209, 1181, 1153, 1059, 1026, $1009 \mathrm{~cm}^{-1}$;

HRMS (FAB) calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{P} m / \mathrm{z} 728.2948[\mathrm{M}+\mathrm{H}]^{+}$, found 728.2944.
NMR spectra: see P29~30.

4-Ethyl 1-methyl 2-((E)-2-((S)-N,1-bis(tert-butoxycarbonyl)-2,5-dihydro-

1H-pyrrole-2-carboxamido)-3-methylpent-2-enamido)but-2-enedioate (23)

To a solution of $9(140 \mathrm{mg}, 192 \mu \mathrm{~mol})$ and $\mathrm{ZnCl}_{2}\left(384 \mu \mathrm{~L}, 384 \mu \mathrm{~mol}, 1.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ in THF (1.9 mL) was added DBU ($29 \mu \mathrm{~L}, 192 \mu \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. Ethyl glyoxalate polymer form (10) ($41 \mu \mathrm{~L}, 192 \mu \mathrm{~mol}, 47 \%$ solution in toluene) was added to the mixture. The mixture was stirred for 15 h at room temperature, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (5 mL), and extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (15 mL), dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc $=9: 1$ to $5: 1$) to give 23 (88.5 mg , $80 \%, E: Z=4.6: 1)$ as a mixture of $E-23$ and $Z-23$.

Colorless amorphous solid;
FTIR (neat) 3294, 3018, 2980, 2936, 2873, 1739, 1716, 1671, 1623, 1520, 1420, 1370, 1288, 1258, 1218, 1143, 1098, 1063, $1038 \mathrm{~cm}^{-1}$;

HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~m} / \mathrm{z} 580.2870[\mathrm{M}+\mathrm{H}]^{+}$, found 580.2878.
NMR spectra: see P31~32.

Synthesis of the tripeptide side chain 24

To a solution of $23(10.1 \mathrm{mg}, 17.4 \mu \mathrm{~mol})$ was added TFA $(0.5 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 30 min at room temperature and concentrated under reduce pressure to give a crude 4.3:1 mixture of $E-24$ and $Z-24$. The residue was purified by PLC (silica gel $60 \mathrm{~F}-254,0.5$ mm thickness, manufactured by Merck) $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10: 1\right)$ to give $E-24(2.3 \mathrm{mg}, 35 \%)$ and a $1: 1.6$ mixture of E-24 and Z-24 (1.2 mg, 18\%). The stereochemistry was determined by comparison of the chemical shift values of olefinic proton (E: $6.05 \mathrm{ppm}, Z: 5.46 \mathrm{ppm}){ }^{2}$;

E-24:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.05(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88$ (m, 2 H), 3.81 (s, 3 H), 2.36 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77 (s, 3 H$), 1.25$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Z-24:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.00(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

References

1) Hamada, M.; Shinada, T.; Ohfune, Y. Org. Lett. 2009, 11, 4664-4667.
2) Yasuno, Y.; Hamada, M.; Yamada, T.; Shinada, T.; Ohune, Y. Eur. J. Org. Chem. 2013, 1884-1888.
3) Mazurkiewicz, R.; Kuźnic, A. Tetrahedron Lett. 2006, 47, 3439-3442.
4) Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht, A. Mangold, R.; Meyer, R.; Riedl, B. Synthesis, 1992, 487-490.
5) (a) Shangguan, N.; Joullié, M. Tetrahedron. Lett. 2009, 50, 6748-6750. (b) Schumacher, K. K.; Jiang, J.; Joullié, M. M. Tetrahedron: Asymmetry 1998, 9, 47-53.

Et-Me (E)_noesy_CDCl3_temp25

\square	
ニーム® ت－	
C	\rightarrow
Current	Data Parameters
NAME	Pro－HWE
EXPNO	20
PROCNO	1
F2－Acquisition Parameters	
Date＿	20140101
Time	17.54
INSTRUM	av300
PROBHD	5 mm PABBO BB－
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	1024
DS	2
SWH	18028.846 Hz
FIDRES	0.275098 Hz
AQ	1.8175818 sec
RG	203
DW	27.733 usec
DE	6.50 usec
TE	292.8 K
D1	2.00000000 sec
D11	0.03000000 sec
＝＝＝＝＝＝＝＝CHANNEL f1＝＝＝＝＝＝＝＝	
P1	10.00 usec
PLW1	38.05099869 W
SFO1	75.4752953 MHz
＝＝＝＝＝＝＝＝CHANNEL f2＝＝＝＝＝＝＝＝	
CPDPRG2	waltz16
NUC2	1H
PCPD2	90.00 usec
PLW2	7.50000000 W
PLW12	0.20833001 W
PLW13	0.16875000 W
SFO2	300.1312005 MHz
F2－Processing parameters	
SI	32768
SF $\quad 75.4677691 \mathrm{MHz}$	
WDW EM	
SSB	0 －
LB	1.00 Hz
GB	0 （ 0
PC	1.40

ppm

$\angle 9 \cdot 67 T>$
6L•6もT
98° ．とGI
$\nabla 8^{\circ}$ ØGI

$\varepsilon L G \cdot 2$
$\varepsilon G \cdot 2$
$6 G G \cdot 2$
$\varepsilon 8 G \cdot Z$

$8 \varepsilon 8^{\circ} \mathrm{G}$
$\varepsilon\left[6^{\circ} \mathrm{G}\right.$

Date_-
Time

틀

7I8．S
E96．

－

은
$86^{\circ} 0$
$\stackrel{1}{\circ}$
$0-10{ }^{\circ}$
$\stackrel{0}{0}$
7.0
$\stackrel{\sim}{\sim}$
∞
$\stackrel{\infty}{\infty}$
$9 \varepsilon^{\circ} 0$
$9.5 \quad 9.0$
$66 \sigma^{\circ}$ L

 Date－

WกYISNI
$\begin{array}{lr}\text { INSTRUM } & \text { av } 300 \\ \text { PROBHD } & 5 \mathrm{~mm} \text { PABBO BB－} \\ \text { PULPROG } & \mathrm{zg} 30\end{array}$
PULPROG
SOLVENT
NS
的场劳客
SWH
FIDRES

옴몸돕
Hz
Hz
sec
っəsn 008•08
SO•OZ
60TLETOZ

9 L
とโDaつ
$9 \varepsilon \varsigma \subseteq 9$
Z
9τ
e τ
6TI•88な9

とても・
LEE
LDE
TSE
$6 G S$
869
ع99
ع08

［Gも・て」
68 I
S6［．も
Oてて
てとて
とでロ
もぁて・ぁ
09て・ォー

عSG・ロ 8 SG・ロ

$\left.\begin{array}{ll}29 I \cdot G \\ 28 I \cdot \mathrm{~g} \\ 26 \mathrm{G} \cdot \mathrm{c}\end{array}\right]$
L6I

してて
$\left.\begin{array}{l}\mathrm{S} 8 \mathrm{Z} \cdot \mathrm{G} \\ 88 \mathrm{G} \cdot \mathrm{G}\end{array}\right]$
86 L － 9
ع8． G^{-1}
$\left.\begin{array}{cc}\mathrm{LE} \\ \mathrm{Tc} 8^{\circ} \mathrm{G} \\ \mathrm{G}\end{array}\right]$
G૬8．与
$068^{\circ} \mathrm{G}$
S68．
$706^{\circ} \mathrm{S}$
$606^{\circ} \mathrm{S}$
$916^{\circ} \mathrm{G}$
$226^{\circ} \mathrm{s}$
TS6．9
－96．
¢ $86^{\circ} \mathrm{G}-$

 $=======$ IJ T＇HNNZHD $========$
っəS 000000 ह0．0

$========$ ZJ TBNNHHD＝＝＝＝＝＝＝＝ $\begin{aligned} & \text { HTZ TEM }\end{aligned}$ usec M M OOOOOOOG．L

zHW S00ztet•00\＆
sォə7əuexed 反uțssəつOu zHW 99GLL9ぁ．SL
2 H 0
1.40
\bigcirc

N
NH
以
$\begin{array}{lll}\curvearrowleft & \text { の } \\ \text { ひ } \\ \text { ひ }\end{array}$

ppm

（

ppm
\bigcirc

O
$\stackrel{10}{\infty}$
is
${ }^{5} 8$
－LZ
$\stackrel{1}{0}$

？
∞
0
م

Date＿－

$\begin{aligned} \text { つəS } & \text { L8GES6て } \\ \text { ZH } & \text { をZぁあ60．0 }\end{aligned}$
วəsn $008^{\circ} 08$
حع

วəs 00000000 ．T
$========$ IJ TGNNZHD
$\begin{aligned} & \text { ZHW } \text { DEG8TET•OOE } \\ & \text { M } 0000000 G^{\circ} \mathrm{L} \\ & \text { oəsn } 00 \cdot 9 T \\ & \text { HT } \\ &========\end{aligned}$
sxə7əurexed 6uțssəDoud

额家宫
N
풍․
$\cdot \quad \stackrel{0}{-}$

