Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting information

For

Delivering carbide moieties to sulfide-rich clusters

Anders Reinholdt,^a Konrad Herbst,^b Jesper Bendix^{a,*}

^{a.} Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Denmark

Telephone: +45 35320101; Email: bendix@kiku.dk

^{b.} Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Kongens Lyngby, Denmark

Contents	S 1
Materials and methods	S2
Syntheses	S 3
Physical measurements	S 7
Supporting figures	S 10
References	S24

Materials and methods

Unless otherwise stated, no precautions were taken to protect the reaction mixtures from air. Acetonitrile (Riedel-de Haën, >99.9%), chloroform (Sigma-Aldrich, HPLC, \geq 99.8%), chloroform-*d* (Sigma-Aldrich, 99.8% D), dichloromethane (Sigma-Aldrich, HPLC, \geq 99.8%), diethyl ether (VWR Chemicals), pentane (Sigma-Aldrich, HPLC, \geq 99.0, and tetrabutylammonium hexafluorophosphate (Sigma-Aldrich, 98%) were purchased from commercial suppliers and used as received. Ru(C)Cl₂(PCy₃)₂ (**RuC**) was synthesized according to the published procedure;¹ **Ru**¹³C was obtained with ¹³CH₂¹³CH–O₂CCH₃ (Sigma-Aldrich, 99% ¹³C). [(MCp')₃S₄M'L]OTs (M = Mo or W, M'L = Pd(dba) or Pt(nor),^{2, 3} ttcn,⁴ [Cu(NCCH₃)₄]BF₄,⁵ [Ag(ttcn)]₄(OTf)₄,⁶ [AuCl(tht)],⁷ and (PNP)[(Cy₃P)₂Cl₂Ru≡C–PdCl₃]⁸ were prepared according to published procedures. [Ag(tht)₂]OTf (OTf⁻ replacing ClO₄⁻) was prepared by the obvious modification of the published procedure.⁹

Syntheses

 $[(Cy_3P)_2Cl_2Ru \equiv C-M'(MCp')_3S_4]OTs (1 - 4)$. General procedure for 1 - 4. In the dark and under a nitrogen atmosphere, equimolar amounts of **RuC** and $[(MCp')_3S_4M'L]OTs$ (typically 20 – 50 µmol) were dissolved in either CH₂Cl₂ or CHCl₃ (2-5 ml) and stirred until the formation of $[(Cy_3P)_2Cl_2Ru\equiv C M'(MCp')_{3}S_{4}^{+}$ was complete. Typically, 1 and 3 require 3 hours of stirring at room temperature, 4 requires one day at room temperature, and 2 requires five days at refluxing temperature (CHCl₃). The Pd complexes 1 and 3 were isolated by adding diethyl ether to the reaction mixtures (typically five or tenfold solvent volume) followed by several washings with diethyl ether, and drying *in vacuo*. Solutions of crude 2 were concentrated to 1 ml, and pentane vapour was allowed to diffuse into the solution, yielding dark needle crystals that were centrifuged off, washed with pentane and dried in vacuo. Crude 4 was evaporated to dryness, washed with pentane, and dried in vacuo. Yields 72 - 84%. Note: for the isolation of 1 and 3, diethyl ether is preferred over pentane, as it readily dissolves dba, which colours the washings yellowish brown. X-ray-quality crystals of 1 and 3 were grown by diffusion of diethyl ether into chloroform solutions containing equal amounts of $[(Cy_3P)_2Cl_2Ru \equiv C-Pd(MCp')_3S_4]OTs$ and $(PNP)[(Cy_3P)_2Cl_2Ru \equiv C - PdCl_3]$ (PNP⁺ = bis(triphenylphosphoranylidene)iminium), affording the complex cations as their $[(Cy_3P)_2Cl_2Ru \equiv C-PdCl_3]^-$ salts. X-ray-quality crystals of 2 and 4 were grown from chloroform by diffusion of pentane, affording the complex cations as their tosylate salts.

[(Cy₃P)₂Cl₂Ru=C-Pd(MoCp')₃S₄]OTs (1). ¹H-NMR, 500 MHz, CDCl₃, δ: 7.83 (d, J = 7.8 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 5.74 (d, J = 1.8 Hz, 6H), 5.73 (d, J = 1.8 Hz, 6H), 2.67 – 2.51 (m, 6H), 2.31 (s, 3H), 2.11 – 2.03 (m, 12H), 2.02 (s, 9H), 1.94 – 1.85 (m, 12H), 1.83 – 1.76 (m, 6H), 1.56 – 1.44 (m, 12H), 1.35 – 1.22 (m, 18H). ¹³C-NMR, 126 MHz, CDCl₃, δ: 429.75, 144.78, 138.52, 128.43, 126.32, 115.70, 95.48, 93.81, 32.56 (t, J = 9.6 Hz), 30.51, 28.23 (t, J = 5.1 Hz), 26.76, 21.45, 15.68. ³¹P-NMR, 121 MHz, CDCl₃, δ: 35.53. ESI⁺ MS, CH₃CN, m/z, f/c: [(Cy₃P)₂Cl₂Ru=C-Pd(MoCp')₃S₄]⁺ 1505.02 / 1504.98. Elemental analysis, calculated for C₆₂H₉₄Cl₂Mo₃O₃P₂PdRuS₅ · ³/₄ CHCl₃: C: 42.69%, H: 5.41%; found C: 42.72%, H: 5.25%.

 $[(Cy_3P)_2Cl_2Ru = C-Pt(MoCp')_3S_4]OTs (2).$ ¹H-NMR, 500 MHz, CDCl₃, δ : 7.84 (d, J = 7.6 Hz, 2H), 7.11 (d, J = 7.7 Hz, 2H), 5.71 – 5.65 (m, 6H), 5.65 – 5.58 (m, 6H), 2.69 – 2.58 (m, 6H), 2.31 (s, 3H), 2.18 – 2.07 (m, 12H), 2.10 (s, 9H), 1.91 – 1.85 (m, 12H), 1.82 – 1.78 (m, 6H), 1.57 – 1.46 (m, 12H), 1.35 – 1.23 (m, 18H). ¹³C-NMR, 126 MHz, CDCl₃, δ : 385.41 (s and d, J = 2416.6 Hz), 144.72, 138.57, 128.45, 126.33, 114.97, 94.60, 93.06, 32.92 (t, J = 9.4 Hz), 30.65, 28.23 (t, J = 4.5 Hz), 26.72, 21.46, 15.61. ³¹P-NMR, 121 MHz, CDCl₃, δ : 32.75. ESI⁺ MS, CH₃CN, m/z, f/c: [(Cy₃P)₂Cl₂Ru≡C–Pt(MoCp')₃S₄]⁺ 1594.05 / 1593.04 (the carbide ligand was ¹³C-labelled, explaining the m/z gain of 1). Elemental analysis, calculated for C₆₂H₉₄Cl₂Mo₃O₃P₂PtRuS₅ · ³/₄ CHCl₃: C: 40.65%, H: 5.15%; found C: 40.86%, H: 5.18%.

[(**Cy**₃**P**)₂**Cl**₂**Ru**≡**C**−**Pd**(**WCp**')₃**S**₄]**OTs** (3). ¹H-NMR, 300 MHz, CDCl₃, δ: 7.84 (d, J = 6.1 Hz, 2H), 7.11 (d, J = 7.1 Hz, 2H), 5.91 – 5.83 (2 m, 12H), 2.66 – 2.49 (m, 6H), 2.32 (s, 3H), 2.21 (s, 9H), 2.16 – 1.99 (m, 12H), 1.98 – 1.85 (m, 12H), 1.85 – 1.73 (m, 6H), 1.60 – 1.42 (m, 12H), 1.36 – 1.23 (m, 18H). ¹³C-NMR (126 MHz, Chloroform-*d*) δ 421.40, 144.83, 138.51, 128.44, 126.32, 114.60, 94.07, 91.44, 32.49 (t, J = 9.5 Hz), 30.55, 28.28, 26.82, 21.46, 15.63. ³¹P-NMR, 121 MHz, CDCl₃, δ: 34.63. FAB⁺ MS, *m*-NBA, *m*/*z*, f/c: [(Cy₃P)₂Cl₂Ru≡C−Pd(WCp')₃S₄]⁺ 1769.6 / 1769.12, [(Cy₃P)₂Cl₂Ru≡C−Pd(WCp')₃S₄ – PCy₃]⁺ 1488.8 / 1488.88, [(Cy₃P)₂Cl₂Ru≡C−Pd(WCp')₃S₄ – PCy₃ – Cl]⁺ 1453.1 / 1451.92, [Pd(WCp')₃S₄]⁺ 1023.6 / 1022.81, [(WCp')₃S₄]⁺ 917.0 / 916.91. Elemental analysis, calculated for C₆₂H₉₄Cl₂O₃P₂PdRuS₅W₃ · 1.5 CHCl₃: C: 36.00%, H: 4.54%; found C: 36.10%, H: 4.25%.

[(Cy₃P)₂Cl₂Ru≡C-Pt(WCp')₃S4]OTs (4). ¹H-NMR, 500 MHz, CDCl₃, δ: 7.83 (d, J = 7.8 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 5.82 – 5.78 (m, 6H), 5.76 – 5.72 (m, 6H), 2.68 – 2.56 (m, 6H), 2.32 (s, 3H), 2.28 (s, 9H), 2.17 – 2.09 (m, 12H), 1.92 – 1.86 (m, 12H), 1.82 – 1.76 (m, 6H), 1.57 – 1.47 (m, 12H), 1.34 – 1.24 (m, 18H). ¹³C-NMR, 126 MHz, CDCl₃, δ: 378.15 (t, J = 5.5 Hz and d, J = 2600.4 Hz), 144.74, 138.59, 128.47, 126.31, 113.85, 93.09, 90.48, 32.83 (t, J = 9.5 Hz), 30.68, 28.27 (t, J = 4.9 Hz), 26.79, 21.46, 15.50. ³¹P-NMR, 121 MHz, CDCl₃, δ: 31.97. FAB⁺ MS, *m*-NBA matrix, *m*/*z*, f/c: [(Cy₃P)₂Cl₂Ru≡C-Pt(WCp')₃S₄]⁺ 1855.6 / 1857.18, [(Cy₃P)₂Cl₂Ru≡C-Pt(WCp')₃S₄ − PCy₃]⁺ 1574.2 / 1576.94, [(WCp')₃S₄]⁺ 915.8 / 916.91. Elemental analysis, calculated for C₆₂H₉₄Cl₂O₃P₂PtRuS₅W₃ · ¹/₂ CHCl₃: C: 35.95%, H: 4.56%; found C: 36.01%, H: 4.32%.

 $[(Cy_3P)_2Cl_2Ru \equiv C-Cu(ttcn)]BF_4$ (5). Under a nitrogen atmosphere, $[Cu(NCCH_3)_4]BF_4$ (13.8 mg, 43.9 µmol) and ttcn (7.9 mg, 44 µmol) were dissolved in 10 ml nitrogen-purged acetonitrile and heated to reflux temperature for one hour. During this time, the initially intense yellow colour fainted to become nearly colourless. **RuC** (32.7 mg, 43.9 µmol) in 10 ml nitrogen-purged chloroform was added, and the solution was kept at reflux temperature for 15 minutes. The solvents were evaporated off, and the dry residue was dissolved in 1 ml chloroform. Diethyl ether vapour was allowed to diffuse into the solution over 2 days. Yellow crystals of $[(Cy_3P)_2Cl_2Ru \equiv C-Cu(ttcn)]BF_4$ (5) were decanted off, washed with

diethyl ether (2 x 2 ml), and dried *in vacuo*. Yield of **5**: 39.1 mg, 36.4 µmol, 82.8% based on **RuC**. ¹H-NMR, 500 MHz, CDCl₃, δ : 3.14 – 3.01 (m, 6H), 2.85 – 2.75 (m, 6H), 2.74 – 2.60 (m, 6H), 2.19 – 2.05 (m, 12H), 1.87 – 1.78 (m, 12H), 1.78 – 1.72 (m, 6H), 1.60 – 1.48 (m, 12H), 1.34 – 1.17 (m, 18H). ¹³C-NMR, 126 MHz, CDCl₃, δ : 431.69, 32.41, 32.03 (t, *J* = 9.9 Hz), 30.26, 28.06 (t, *J* = 5.2 Hz), 26.54. ³¹P-NMR, 121 MHz, CDCl₃, δ : 41.02. ¹⁹F-NMR, 282 MHz, CDCl₃, δ : –152.62. ESI⁺ MS, CH₃CN, *m/z*, f/c: [(Cy₃P)₂Cl₂Ru≡C–Cu(ttcn)]⁺ 989.26 / 989.24. Elemental analysis, calculated for C₄₃H₇₈BCl₂CuF₄P₂RuS₃: C: 48.02%, H: 7.31%; found C: 47.85%, H: 7.34%.

[(**Cy**₃**P**)₂**Cl**₂**Ru**=**C**–**Ag**(**ttcn**)]**OTf** (6). [Ag(ttcn)]₄(OTf)₄ (10.2 mg, 5.83 μmol) and **RuC** (17.4 mg, 23.4 μmol) were dissolved in 5 ml chloroform and heated to reflux temperature for one hour. After filtering, the solvent was evaporated off, leaving a yellow residue of [(Cy₃P)₂Cl₂Ru=C–Ag(ttcn)]OTf that was washed with diethyl ether (3 x 5 ml), and dried *in vacuo*. Yield of **6** \cdot $\frac{1}{3}$ CHCl₃: 24.7 mg, 20.2 μmol, 86.5% based on **RuC**. ¹H-NMR, 300 MHz, CDCl₃, δ: 3.30 – 3.07 (m, 6H), 2.84 – 2.59 (m, 12H), 2.23 – 2.04 (m, 12H), 1.94 – 1.69 (m, 18H), 1.69 – 1.47 (m, 12H), 1.40 – 1.19 (m, 18H). ¹³C-NMR, 126 MHz, CDCl₃, δ: 431.84 (d, *J* = 175.4 Hz), 120.81 (q, *J* = 320.2 Hz), 32.22 (t, *J* = 9.9 Hz), 30.30, 29.98, 28.07 (t, *J* = 5.2 Hz), 26.55. ³¹P-NMR, 121 MHz, CDCl₃, δ: 42.28. ¹⁹F-NMR, 282 MHz, CDCl₃, δ: -78.72. ESI⁺ MS, CH₃CN, *m*/*z*, f/c: [(Cy₃P)₂Cl₂Ru=C–Ag(ttcn)]⁺ 1033.23 / 1033.22. Elemental analysis, calculated for C₄₄H₇₈AgCl₂F₃O₃P₂RuS₄ $\cdot \frac{1}{3}$ CHCl₃: C: 43.58%, H: 6.46%; found C: 43.61%, H: 6.39%.

[(Cy₃P)₂Cl₂Ru=C–Au(ttcn)]OTf (7). AuCl(tht) (1.7 mg, 5.3 μmol) and [Ag(tht)₂]OTf (2.3 mg, 5.3 μmol) were dissolved in 0.3 ml CDCl₃ and stirred for 5 minutes, producing a white precipitate of AgCl. With an additional 0.3 ml CDCl₃, ttcn (1.0 mg, 5.5 μmol) was added, and the solution was stirred for five minutes. Finally, **Ru**¹³C (4.0 mg, 5.4 μmol in 0.2 ml CDCl₃) was added, the solution was stirred for ten minutes and analysed by NMR. As 7 decomposes and occurs along with (Cy₃P)₂Cl₂Ru=C–AuCl and tht, the most informative spectroscopic data are: ¹³C-NMR, 126 MHz, CDCl₃, δ: 414.12 (t, J = 5.0 Hz). ³¹P-NMR, 121 MHz, CDCl₃, δ: 40.70. ESI⁺ MS, CH₃CN, m/z, f/c: [(Cy₃P)₂Cl₂Ru=C–Au(ttcn)]⁺ 1123.31 / 1123.28. For spectra, see Figures S10 – S14.

Conversion of 5 to 3. Solid **5** (1.1 mg, 1.0 μ mol) was dissolved in 0.5 ml CDCl₃; the ¹H-NMR and ³¹P-NMR spectra showed only resonances from **5**. [(WCp')₃S₄Pd(dba)]OTs (1.4 mg, 0.98 μ mol) was added to the solution. After 15 minutes, ¹H and ³¹P NMR spectra showed only resonances from **5**. After 21 h,

resonances from **3** and **5** were visible, having the ratio 2:5 (by 1 H integrals, see Figure S15) and 1:3 (by 31 P integrals, see Figure S16).

Physical measurements

NMR-spectroscopy: ³¹P{¹H}-NMR and ¹⁹F-NMR spectra were recorded on a 300 MHz Varian instrument. ¹³C{¹H}-NMR spectra were recorded on a 500 MHz Bruker instrument with a cryoprobe, and ¹H-NMR spectra were recorded on a 300 MHz Varian instrument or a 500 MHz Bruker instrument with a cryoprobe. ¹H and ¹³C resonances were referenced to residual solvent signals (CDCl₃: δ = 7.26, ¹H, and 77.16 ppm, ¹³C). ³¹P and ¹⁹F signals were referenced to the deuterium resonances arising from the solvents.

Mass spectrometric measurements were carried out on a Jeol four sector instrument (FAB, with *m*-nitrobenzylalcohol [*m*-NBA] as matrix) or on a Bruker Solarix XR ESI/MALDI FT-ICR MS instrument (ESI, acetonitrile containing formic acid as solvent).

Elemental analyses were performed by the microanalytical services of the Department of Chemistry, University of Copenhagen.

X-ray crystallographic studies employed single crystals of 1-6 that were coated with mineral oil, placed on nylon loops, and mounted in the nitrogen cold stream of the diffractometer. The single-crystal X-ray diffraction studies were performed at 122(2) K on a Bruker D8 VENTURE diffractometer equipped with a Mo $K\alpha$ high-brilliance I μ S radiation source ($\lambda = 0.71073$ Å), a multilayer X-ray mirror and a PHOTON 100 CMOS detector, and an Oxford Cryosystems low temperature device. The instrument was controlled with the APEX2 software package using SAINT.¹⁰ Final cell constants were obtained from least squares fits of several thousand strong reflections. Intensity data were corrected for absorption using intensities of redundant reflections with the program SADABS.¹¹ The structures were solved in Olex2 using the olex2.solve¹² program (Charge Flipping) and refined using the olex2.refine program¹³ or SHELXL.¹⁴ All non-hydrogen atoms were refined anisotropically; in disordered fragments, the least occupant parts were refined isotropically, if necessary. Hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters ($U_{iso} = 1.2 U_{eq}$ of the parent atom, except for methyl hydrogens which were constrained to 1.5 U_{eq} of the parent atom). Disorder was treated with appropriate choices of the EADP, ISOR, and SADI commands. CCDC entries 1433236-1433241 contain the crystallographic data reported herein. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Selected crystallographic details are listed in Table S1 below.

Compound	1 (CCDC 1433236)	2 (CCDC 1433237)	3 (CCDC 1433238)
Empirical formula	$C_{95.19}H_{158.33}Cl_{11.82}Mo_{3}O_{0.40}P_{4}Pd_{2}Ru_{2}S_{4}$	$C_{65}H_{97}Cl_{11}Mo_3O_3P_2PtRuS_5$	$C_{94.65}H_{154.79}Cl_{12.35}O_{0.22}P_4Pd_2Ru_2S_4W_3$
Formula weight	2682.91	2122.59	2952.62
Temperature / K	122(2)	122(2)	122(2)
Crystal system	triclinic	monoclinic	triclinic
Space group	<i>P</i> -1	$P2_1/c$	<i>P</i> -1
a / Å	13.8281(9)	22.0554(19)	13.8702(4)
b / Å	17.5883(11)	9.9627(9)	17.6143(5)
<i>c</i> / Å	23.8941(16)	36.388(3)	23.8397(8)
α / °	80.217(2)	90	80.2950(10)
β/°	75.331(2)	93.738(2)	75.2550(10)
y/°	84.330(3)	90	83.9490(10)
$V/Å^3$	5530.7(6)	7978.5(12)	5540.0(3)
Ζ	2	4	2
$\rho_{\rm calc}$ / g cm ⁻³	1.611	1.767	1.770
μ / mm^{-1}	1.374	2.972	4.156
2θ range for data collection / °	4.496 to 51.362	4.488 to 50.054	4.346 to 52.044
Reflections collected	125278	107771	84030
Independent reflections	$20984 [R_{int} = 0.0605]$	$14078 [R_{int} = 0.0701]$	$21806 [R_{int} = 0.0423]$
Restraints / parameters	6/1132	56 / 884	8/1119
Goodness-of-fit on F^2	1.018	1.120	1.043
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0314, wR_2 = 0.0630$	$R_1 = 0.0553, wR_2 = 0.1049$	$R_1 = 0.0359, wR_2 = 0.0755$
Final <i>R</i> indexes [all data]	$R_1 = 0.0482, wR_2 = 0.0686$	$R_1 = 0.0789, wR_2 = 0.1117$	$R_1 = 0.0533, wR_2 = 0.0839$
Largest diff. peak / hole / e Å ⁻³	2.24/-1.83	2.19/-1.24	3.40/-2.14
Zargest ann pear, noie, e m	21217/1100	211) / 1121	
Compound	4 (CCDC 1433239) 5	(CCDC 1433240)	6 (CCDC 1433241)
Compound Empirical formula	4 (CCDC 1433239) 5 CesHorClu(O2P2PtRuSsW2 C	(CCDC 1433240) 47H965BCl5CuF4O075P3RuS2	6 (CCDC 1433241) C46 02H84 77AgCl2 08F2O2 64P2RuS4
Compound Empirical formula Formula weight	$\begin{array}{c} 4 \ (\text{CCDC 1433239}) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \end{array}$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45	6 (CCDC 1433241) C _{46.92} H _{84.77} AgCl _{3.08} F ₃ O _{3.64} P ₂ RuS ₄ 1272.44
Compound Empirical formula Formula weight Temperature / K	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C. 2386.32 12 122(2) 12	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2)	6 (CCDC 1433241) C _{46.92} H _{84.77} AgCl _{3.08} F ₃ O _{3.64} P ₂ RuS ₄ 1272.44 122(2)
Compound Empirical formula Formula weight Temperature / K Crystal system	$\begin{array}{c c} 4 (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_{3}P_{2}PtRuS_{5}W_{3} & C_{2}\\ 2386.32 & 12\\ 122(2) & 12\\ monoclinic & tri$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic	$\begin{array}{c} \textbf{6} \ \textbf{(CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_3O_{3.64}P_2RuS_4 \\ 1272.44 \\ 122(2) \\ orthorhombic \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Snace group	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C 2386.32 12 122(2) 12 monoclinic tr $P2_1/c$ P	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1	6 (CCDC 1433241) C _{46.92} H _{84.77} AgCl _{3.08} F ₃ O _{3.64} P ₂ RuS ₄ 1272.44 122(2) orthorhombic P ₂ , 2, 2,
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C 2386.32 12 122(2) 12 monoclinic tr $P_{21/c}$ P 22 1025(17) 9	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3)	6 (CCDC 1433241) $C_{46.92}H_{84.77}AgCl_{3.08}F_3O_{3.64}P_2RuS_4$ 1272.44 122(2) orthorhombic $P2_12_12_1$ 9 50101(4)
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C 2386.32 12 122(2) 12 monoclinic tr $P2_{1/c}$ P 22.1025(17) 9. 9.9658(8) 12	$(CCDC 1433240)_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_322(0)iclinic-1636(3)7 256(5)$	6 (CCDC 1433241) C _{46.92} H _{84.77} AgCl _{3.08} F ₃ O _{3.64} P ₂ RuS ₄ 1272.44 122(2) orthorhombic P2 ₁ 2 ₁ 2 ₁ 9.5010(4) 22 3773(10)
Compound Empirical formula Formula weight Temperature / K Crystal system Space group <i>a</i> / Å <i>b</i> / Å <i>c</i> / Å	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C 2386.32 12 122(2) 12 monoclinic tr $P2_{1/c}$ P 22.1025(17) 9 9.9658(8) 15	$(CCDC 1433240)$ ${}_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3$ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7)	$6 (CCDC 1433241) C_{46.92}H_{84.77}AgCl_{3.08}F_3O_{3.64}P_2RuS_4 122(2) orthorhombic P2_{12_{12_{12_{12_{13}}}} 9.5010(4) 22.3773(10) 27.2642(11) $
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / °	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C, \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline monoclinic & tri \\ P2_{1/c} & P_{2} \\ 22.1025(17) & 9, \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 91 \\ \end{array}$	$(CCDC 1433240)_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3250.4522(2)iclinic-1.636(3)7.256(5)8.491(7)1 100(14)$	$\begin{array}{c} \textbf{6} \ \textbf{(CCDC 1433241)} \\ \textbf{C}_{46.92}\textbf{H}_{84.77}\textbf{A}\textbf{g}\textbf{C}\textbf{I}_{3.08}\textbf{F}_{3}\textbf{O}_{3.64}\textbf{P}_{2}\textbf{R}\textbf{u}\textbf{S}_{4} \\ 1272.44 \\ 122(2) \\ \hline \textbf{orthorhombic} \\ \textbf{P}_{212_{1}2_{1}} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group <i>a</i> / Å <i>b</i> / Å <i>c</i> / Å <i>a</i> / ° <i>B</i> / °	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline \text{monoclinic} & \text{tr} \\ P2_{1}/c & P_{2} \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 93.775(2) & 97 \\ \end{array}$	$(CCDC 1433240)_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3250.4522(2)iclinic-1636(3)7.256(5)8.491(7)1.100(14)7 986(16)$	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ \textbf{C}_{46.92}\textbf{H}_{84.77}\textbf{AgCl}_{3.08}\textbf{F}_{3}\textbf{O}_{3.64}\textbf{P}_{2}\textbf{RuS}_{4} \\ 1272.44 \\ 122(2) \\ \hline \textbf{orthorhombic} \\ \textbf{P}_{21212_{1}} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf{90} \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ y / °	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline \text{monoclinic} & tri \\ P2_{1/c} & P^2 \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 93.775(2) & 97 \\ 90 & 99 \\ \end{array}$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12)	$\begin{array}{c} \textbf{6} (\textbf{CCDC 1433241}) \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{12} \\ 9.5010(4) \\ 22.3773(10) \\ 27.2642(11) \\ 90 \\ 90 \\ 90 \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline monoclinic & tri \\ P2_{1/c} & P. \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 90 & 92 \\ 93.775(2) & 97 \\ 90 & 99 \\ 8005 8(11) & 27 \\ \end{array}$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 905 8(16)	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{1}2_{1} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{5796 6(4)} \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline monoclinic & tri \\ P2_{1/c} & P. \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 93.775(2) & 97 \\ 90 & 99 \\ 8005.8(11) & 29 \\ 4 & 1 \\ \end{array}$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16)	$\begin{array}{c} \textbf{6} \ \textbf{(CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{12} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{5796.6(4)} \\ \textbf{4} \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{12} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{5796.6}(4) \\ \textbf{4} \\ 1.458 \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386 032	$\begin{array}{c} \textbf{6} \ \textbf{(CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P2_{1}2_{1}2_{1} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{90} \\ \textbf{5796.6(4)} \\ \textbf{4} \\ 1.458 \\ \textbf{0} \ \textbf{987} \end{array}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / °	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_{3}P_{2}PtRuS_{5}W_{3} & C_{2}\\ 2386.32 & 12 \\ 122(2) & 12 \\ monoclinic & tri \\ p_{21/c} & P_{2}\\ 22.1025(17) & 9.\\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 93.775(2) & 97 \\ 90 & 92 \\ 8005.8(11) & 22 \\ 4 & 1 \\ 1.980 & 1.\\ 6.799 & 1. \\ 6.799 & 1. \\ \end{array}$	(CCDC 1433240) ₄₇ H _{86.5} BCl ₅ CuF ₄ O _{0.75} P ₂ RuS ₃ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386 032 454 to 55 756	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P2_{1}2_{1}2_{1} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / °	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(CCDC 1433240)_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3250.4522(2)iclinic-1636(3)7.256(5)8.491(7)1.100(14)7.986(16)9.976(12)995.8(16)386032454 to 55.7562665$	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ \textbf{C}_{46.92}\textbf{H}_{84.77}\textbf{AgCl}_{3.08}\textbf{F}_{3}\textbf{O}_{3.64}\textbf{P}_{2}\textbf{RuS}_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ \textbf{P}_{212_{1}2_{1}} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / ° Reflections collected Independent reflections	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{05}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline \text{monoclinic} & \text{tri} \\ P2_{1}/c & P \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 90 & 92 \\ 93.775(2) & 97 \\ 90 & 99 \\ 8005.8(11) & 29 \\ 4 & 11 \\ 1.980 & 1. \\ 6.799 & 1. \\ 6.799 & 1. \\ 4.594 \ to \ 50.054 & 4. \\ 119943 & 47 \\ 14116 \ E_{10} = 0.09851 & 14 \\ \end{array}$	$(CCDC 1433240)_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3250.4522(2)iclinic-1.636(3)7.256(5)8.491(7)1.100(14)7.986(16)9.976(12)995.8(16)386032.454 to 55.75626654016 [R. = 0.0327]$	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ \textbf{C}_{46.92}\textbf{H}_{84.77}\textbf{AgCl}_{3.08}\textbf{F}_{3}\textbf{O}_{3.64}\textbf{P}_{2}\textbf{RuS}_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ \textbf{P}_{2,1}2_{1} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ \textbf{90}$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / ° Reflections collected Independent reflections	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline \text{monoclinic} & \text{tri} \\ P2_{1/c} & P. \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 92 \\ 90 & 92 \\ 93.775(2) & 97 \\ 90 & 99 \\ 8005.8(11) & 22 \\ 4 & 11 \\ 1.980 & 1. \\ 6.799 & 1. \\ 4.594 \ \text{to } 50.054 & 4. \\ 119943 & 47 \\ 14116 \ [R_{\text{int}} = 0.0985] & 14 \\ 14/839 & 47 \\ \hline \end{array}$	$(CCDC 1433240)$ ${}_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3$ 220.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386 032 454 to 55.756 2665 4016 [$R_{int} = 0.0327$] 2/703	$\begin{array}{c} \textbf{6} (\textbf{CCDC 1433241}) \\ \textbf{C}_{46.92}\textbf{H}_{84.77}\textbf{AgCl}_{3.08}\textbf{F}_{3}\textbf{O}_{3.64}\textbf{P}_{2}\textbf{RuS}_{4} \\ 1272.44 \\ 122(2) \\ \hline \textbf{orthorhombic} \\ \textbf{P}_{2,1}2_{1} \\ \textbf{9.5010(4)} \\ 22.3773(10) \\ 27.2642(11) \\ \textbf{90} \\ 90$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / ° Reflections collected Independent reflections Restraints / parameters Groudness-of-fit on E^2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(CCDC 1433240)$ ${}_{47}H_{86.5}BCl_{5}CuF_{4}O_{0.75}P_{2}RuS_{3}$ 220.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386 032 454 to 55.756 2665 4016 [$R_{int} = 0.0327$] 2/703 030	$\begin{array}{c} \textbf{6} (\textbf{CCDC 1433241}) \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{2_{1}2_{1}2_{1}} \\ 9.5010(4) \\ 22.3773(10) \\ 27.2642(11) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ $\gamma/°$ $\gamma/Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / ° Reflections collected Independent reflections Restraints / parameters Goodness-of-fit on F^2 Einal <i>R</i> indexes $[L_{2}-2\sigma(D)]$	$\begin{array}{c c} 4 \ (\text{CCDC } 1433239) & 5 \\ C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3 & C. \\ 2386.32 & 12 \\ 122(2) & 12 \\ \hline monoclinic & tri \\ P2_{1/c} & P^{2} \\ 22.1025(17) & 9. \\ 9.9658(8) & 17 \\ 36.424(3) & 18 \\ 90 & 91 \\ 93.775(2) & 97 \\ 90 & 99 \\ 8005.8(11) & 29 \\ 4 & 11 \\ 1.980 & 1. \\ 6.799 & 1. \\ 4.594 \ to \ 50.054 & 4. \\ 119943 & 42 \\ 14116 \ [R_{int} = 0.0985] & 14 \\ 14/839 & 42 \\ 1.118 & 1. \\ R_{1} = 0.0520 \ wR_{2} = 0.0977 & R \\ \end{array}$	$(CCDC 1433240)$ ${}_{47}H_{86.5}BCl_{5}CuF_{4}O_{0.75}P_{2}RuS_{3}$ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386 032 454 to 55.756 2665 4016 [$R_{int} = 0.0327$] 2/703 030 + - 0.0547 wR_{5} = 0.1475	$\begin{array}{c} \textbf{6} (\textbf{CCDC 1433241}) \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{12} \\ 9.5010(4) \\ 22.3773(10) \\ 27.2642(11) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / ° Reflections collected Independent reflections Restraints / parameters Goodness-of-fit on F^2 Final <i>R</i> indexes [<i>I</i>]=2 σ (<i>I</i>)] Final <i>R</i> indexes [all data]	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C. 2386.32 12 monoclinic tri $P2_{1/C}$ P 22.1025(17) 9. 9.9658(8) 17 36.424(3) 18 90 91 93.775(2) 92 90 92 8005.8(11) 29 4 1 1.980 1. 6.799 1. 4.594 to 50.054 4. 119943 42 14116 [$R_{int} = 0.0985$] 14 14.7839 42 1.118 1. $R_1 = 0.0520, wR_2 = 0.0977$ R	$(CCDC 1433240)$ ${}_{47}H_{86.5}BCl_{5}CuF_{4}O_{0.75}P_{2}RuS_{3}$ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 9.976(12) 9.976(12) 9.976(12) 9.976(12) 3.86 0.32 4.54 to 55.756 2.665 4016 [$R_{int} = 0.0327$] 2/703 0.30 1 = 0.0547, $wR_{2} = 0.1475$ 1 = 0.0547, $wR_{2} = 0.1475$	$\begin{array}{c} \textbf{6} (\textbf{CCDC 1433241}) \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{12} \\ 9.5010(4) \\ 22.3773(10) \\ 27.2642(11) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$
Compound Empirical formula Formula weight Temperature / K Crystal system Space group a / Å b / Å c / Å a / ° $\beta / °$ $\gamma / °$ $V / Å^3$ Z $\rho_{calc} / g cm^{-3}$ μ / mm^{-1} 2θ range for data collection / ° Reflections collected Independent reflections Restraints / parameters Goodness-of-fit on F^2 Final <i>R</i> indexes [<i>I</i>]=2 σ (<i>I</i>)] Final <i>R</i> indexes [all data] Largest / bill / e Å^{-3}	4 (CCDC 1433239) 5 $C_{65}H_{97}Cl_{11}O_3P_2PtRuS_5W_3$ C. 2386.32 12 monoclinic tri $P2_{1/C}$ P 22.1025(17) 9. 9.9658(8) 17 36.424(3) 18 90 91 93.775(2) 97 90 92 8005.8(11) 29 4 1 1.980 1. 6.799 1. 4.594 to 50.054 4. 119943 42 14116 [$R_{int} = 0.0985$] 14 1.118 1. $R_1 = 0.0520, wR_2 = 0.0977$ R $R_1 = 0.0814, wR_2 = 0.1056$ R	$(CCDC 1433240)$ ${}_{47}H_{86.5}BCl_5CuF_4O_{0.75}P_2RuS_3$ 250.45 22(2) iclinic -1 636(3) 7.256(5) 8.491(7) 1.100(14) 7.986(16) 9.976(12) 995.8(16) 386 032 454 to 55.756 2665 4016 [$R_{int} = 0.0327$] 2/703 030 1 = 0.0547, $wR_2 = 0.1475$ 1 = 0.0691, $wR_2 = 0.1593$ 37/-17	$\begin{array}{c} \textbf{6 (CCDC 1433241)} \\ C_{46.92}H_{84.77}AgCl_{3.08}F_{3}O_{3.64}P_{2}RuS_{4} \\ 1272.44 \\ 122(2) \\ \hline \\ \textbf{orthorhombic} \\ P_{21}2_{1}2_{1} \\ 9.5010(4) \\ 22.3773(10) \\ 27.2642(11) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$

Table S1. Crystallographic data for 1 - 6.

Electrochemical measurements were carried out under a nitrogen atmosphere with anhydrous dichloromethane as the solvent and with tetrabutylammonium hexafluorophosphate as the electrolyte (0.20 M). The instrumentation has been described meticulously by Zanello.¹⁵ The reference electrode used for the measurements of 1 - 3 was a Ag/AgCl (3 M KCl) electrode rather than a saturated calomel electrode, which previously was used to measure the analogous PPh₃ complexes.³ The cyclic voltammograms shown below (Figures S17 – S19) are referenced to the Ag/AgCl (3 M KCl) electrode. To allow comparisons between M₃S₄ML systems with L = PPh₃ and **RuC**, the square wave voltammetry potentials are referenced to the ferrocene-ferrocenium redox couple rather than the reference electrodes, taking $E^{6^{\circ}2+/3+}$ of ferrocene as 0.

Supporting figures

Figure S1. Representation of the decomposition product, $[(WCp')_3S_4][(Cy_3P)_2Cl_2Ru\equiv C-PtCl_3]$, which forms when **4** is left in chloroform solution for prolonged periods. Cp' and Cy of are shown as wireframe. The structure was solved partially. Unit cell data: triclinic *P*-1, *a* = 11.610(2) Å, *b* = 13.640(3) Å, *c* = 24.753(5) Å, $\alpha = 95.001(6)^\circ$, $\beta = 103.462(6)^\circ$, $\gamma = 112.757(6)^\circ$, V = 3446.1 Å³.

Figure S2. ¹H-NMR spectrum of **2**. The signals at 0.88 ppm and 5.75 ppm arise from traces of pentane and cyclopentadienide.

Figure S3. ¹H-NMR spectrum of 2, magnification. The signal at 1.76 arises from a trace of water.

Figure S4. ¹³C-NMR spectrum of 2.

Figure S5. ³¹P-NMR spectrum of 2.

Figure S6. ¹H-NMR spectrum of 5.

Figure S7. ¹H-NMR spectrum of **5**, magnification. The signals at 3.48 ppm and 1.69 arise from traces of diethyl ether and water.

Figure S8. ¹³C-NMR spectrum of 5.

Figure S9. ³¹P-NMR spectrum of 5.

Figure S10. ¹³C-NMR spectrum of the reaction mixture containing 7.

Figure S11. ³¹P-NMR spectrum of the reaction mixture containing 7. The resonance at 43.87 ppm arises from $(Cy_3P)_2Cl_2Ru\equiv C-AuCl \ [\delta(^{31}P) = 43.86 \text{ ppm}].^8 \ \{(Cy_3P)_2Cl_2Ru\equiv C\}_2Au^+ \text{ is absent } \ [\delta(^{31}P) = 51.11 \text{ ppm}].^8$

Figure S12. ESI⁺ MS spectrum of 7.

Figure S13. ESI⁺ MS spectrum of 7.

Figure S14. Simulated mass spectrum of the cation in **7**. (Using mMass: Strohalm M., Kavan D., Novák P., Volný M., Havlíček V., *Anal Chem* 82 (11), 4648-4651 (2010), DOI: <u>10.1021/ac100818g</u>)

Figure S15. ¹H-NMR: conversion of **5** (multiplet at 2.68 ppm) to **3** (multiplet at 2.57 ppm) upon reaction with [(WCp')₃S₄Pd(dba)]OTs. Spectra 1 and 2 were recorded after 15 min and 21 h.

Figure S16. ³¹P-NMR: conversion of **5** (resonance at 39.8 ppm) to **3** (resonance at 33.7 ppm) upon reaction with [(WCp')₃S₄Pd(dba)]OTs. Spectra 1 and 2 were recorded after 15 min and 21 h.

Figure S17. Cyclic voltammogram of 1. The potentials are referenced to the Ag/AgCl (3 M KCl) electrode. Scan rate: 0.4 V s^{-1} .

Figure S18. Cyclic voltammogram of **2**. The potentials are referenced to the Ag/AgCl (3 M KCl) electrode. Scan rate: 0.2 V s⁻¹.

Figure S19. Cyclic voltammogram of 3. The potentials are referenced to the Ag/AgCl (3 M KCl) electrode. Scan rate: 1.0 V s^{-1} .

Figure S20. Histogram with Ru-C distances from the Cambridge Structural Database v. 1.17, and a zoom on the range where the Ru-C distance in **6** falls (shortest 0.01%).

Figure S21. Histograms with M-C distances (M = Pd, Pt, Cu, and Ag) from the Cambridge Structural Database v. 1.17. **RuC**-M distances are indicated by arrows.

References

- 1. S. R. Caskey, M. H. Stewart, J. E. Kivela, J. R. Sootsman, M. J. A. Johnson and J. W. Kampf, *J. Am. Chem. Soc.*, 2005, **127**, 16750-16751.
- 2. K. Herbst, B. Rink, L. Dahlenburg and M. Brorson, *Organometallics*, 2001, **20**, 3655-3660.
- 3. K. Herbst, P. Zanello, M. Corsini, N. D'Amelio, L. Dahlenburg and M. Brorson, *Inorg. Chem.*, 2003, **42**, 974-981.
- 4. D. Sellmann and L. Zapf, *Angew. Chem.*, 1984, **96**, 799-800.
- 5. G. J. Kubas, B. Monzyk and A. L. Crumbliss, in *Inorg. Synth.*, John Wiley & Sons, Inc., 1979, vol. 19, pp. 90-92.
- 6. P. J. Blower, J. A. Clarkson, S. C. Rawle, J. R. Hartman, R. E. Wolf, R. Yagbasan, S. G. Bott and S. R. Cooper, *Inorg. Chem.*, 1989, **28**, 4040-4046.
- 7. R. Uson, A. Laguna, M. Laguna, D. A. Briggs, H. H. Murray and J. P. Fackler, in *Inorg. Synth.*, John Wiley & Sons, Inc., 1989, vol. 26, pp. 85-91.
- 8. A. Reinholdt, J. E. Vibenholt, T. J. Morsing, M. Schau-Magnussen, N. E. A. Reeler and J. Bendix, *Chem. Sci.*, 2015, **6**, 5815-5823.
- 9. R. Uson, J. Fornies, M. Tomas, I. Ara, J. M. Casas and A. Martin, *J. Chem. Soc., Dalton Trans.*, 1991, DOI: 10.1039/DT9910002253, 2253-2264.
- 10. Bruker; Bruker AXS, Inc. SAINT, Version 7.68A; Bruker AXS: Madison, WI, 2009.
- 11. G. Sheldrick, SADABS, Version 2008/2; University of Göttingen: Germany, 2003.
- 12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- 13. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Crystallogr., Sect. A*, 2015, **71**, 59-75.
- 14. G. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.
- 15. P. Zanello, F. Laschi, M. Fontani, C. Mealli, A. Ienco, K. Tang, X. Jin and L. Li, *J. Chem. Soc., Dalton Trans.*, 1999, DOI: 10.1039/A807500J, 965-970.