## Supporting information

For

## Delivering carbide moieties to sulfide-rich clusters

Anders Reinholdt, ${ }^{\text {a }}$ Konrad Herbst, ${ }^{\text {b }}$ Jesper Bendix ${ }^{\text {a, }}{ }^{\text {* }}$<br>a. Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Denmark<br>Telephone: +45 35320101; Email: bendix @kiku.dk<br>b. Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Kongens Lyngby, Denmark

Contents ..... S1
Materials and methods ..... S2
Syntheses ..... S3
Physical measurements ..... S7
Supporting figures ..... S10
References ..... S24

## Materials and methods

Unless otherwise stated, no precautions were taken to protect the reaction mixtures from air. Acetonitrile (Riedel-de Haën, >99.9\%), chloroform (Sigma-Aldrich, HPLC, $\geq 99.8 \%$ ), chloroform- $d$ (Sigma-Aldrich, $99.8 \%$ D), dichloromethane (Sigma-Aldrich, HPLC, $\geq 99.8 \%$ ), diethyl ether (VWR Chemicals), pentane (Sigma-Aldrich, HPLC, $\geq 99.0$, and tetrabutylammonium hexafluorophosphate (Sigma-Aldrich, 98\%) were purchased from commercial suppliers and used as received. $\mathrm{Ru}(\mathrm{C}) \mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ ( $\mathbf{R u C}$ ) was synthesized according to the published procedure; ${ }^{1} \mathbf{R u}^{13} \mathbf{C}$ was obtained with ${ }^{13} \mathrm{CH}_{2}{ }^{13} \mathrm{CH}-\mathrm{O}_{2} \mathrm{CCH}_{3}$ (Sigma-Aldrich, $99 \%{ }^{13} \mathrm{C}$ ). [(MCp') $\left.3_{3} \mathrm{~S}_{4} \mathrm{M}^{\prime} \mathrm{L}\right] \mathrm{OTs}\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W}, \mathrm{M}^{\prime} \mathrm{L}=\operatorname{Pd}(\mathrm{dba})$ or $\operatorname{Pt}($ nor $),{ }^{2,3} \operatorname{ttcn},{ }^{4}$ $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right] \mathrm{BF}_{4},{ }^{5} \quad[\mathrm{Ag}(\mathrm{ttcn})]_{4}(\mathrm{OTf})_{4},{ }^{6} \quad[\mathrm{AuCl}($ tht $)],{ }^{7}$ and $\quad(\mathrm{PNP})\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{PdCl}_{3}\right]^{8}$ were prepared according to published procedures. $\left[\mathrm{Ag}(\mathrm{tht})_{2}\right] \mathrm{OTf}\left(\mathrm{OTf}^{-}\right.$replacing $\left.\mathrm{ClO}_{4}^{-}\right)$was prepared by the obvious modification of the published procedure. ${ }^{9}$

## Syntheses

$\left[\left(\mathbf{C y}_{3} \mathbf{P}\right)_{2} \mathbf{C l}_{2} \mathbf{R u}=\mathbf{C}-\mathbf{M}^{\prime}\left(\mathbf{M C p}{ }^{\prime}\right){ }_{3} \mathbf{S}_{4}\right] \mathbf{O T s}(\mathbf{1}-\mathbf{4})$. General procedure for $\mathbf{1 - 4}$. In the dark and under a nitrogen atmosphere, equimolar amounts of RuC and [(MCp') $\left.{ }_{3} S_{4} \mathrm{M}^{\prime} \mathrm{L}\right] O T \mathrm{O}$ (typically $20-50 \mu \mathrm{~mol}$ ) were dissolved in either $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CHCl}_{3}(2-5 \mathrm{ml})$ and stirred until the formation of $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\right.$ $\left.\mathrm{M}^{\prime}\left(\mathrm{MCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right]^{+}$was complete. Typically, $\mathbf{1}$ and $\mathbf{3}$ require 3 hours of stirring at room temperature, $\mathbf{4}$ requires one day at room temperature, and $\mathbf{2}$ requires five days at refluxing temperature $\left(\mathrm{CHCl}_{3}\right)$. The Pd complexes $\mathbf{1}$ and $\mathbf{3}$ were isolated by adding diethyl ether to the reaction mixtures (typically five or tenfold solvent volume) followed by several washings with diethyl ether, and drying in vacuo. Solutions of crude 2 were concentrated to 1 ml , and pentane vapour was allowed to diffuse into the solution, yielding dark needle crystals that were centrifuged off, washed with pentane and dried in vacuo. Crude 4 was evaporated to dryness, washed with pentane, and dried in vacuo. Yields $72-84 \%$. Note: for the isolation of $\mathbf{1}$ and $\mathbf{3}$, diethyl ether is preferred over pentane, as it readily dissolves dba, which colours the washings yellowish brown. X-ray-quality crystals of $\mathbf{1}$ and $\mathbf{3}$ were grown by diffusion of diethyl ether into chloroform solutions containing equal amounts of $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Pd}\left(\mathrm{MCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right] \mathrm{OTs}$ and $(\mathrm{PNP})\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{PdCl}_{3}\right] \quad\left(\mathrm{PNP}^{+}=\right.$bis(triphenylphosphoranylidene)iminium), affording the complex cations as their $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{PdCl}_{3}\right]^{-}$salts. X-ray-quality crystals of $\mathbf{2}$ and $\mathbf{4}$ were grown from chloroform by diffusion of pentane, affording the complex cations as their tosylate salts.
$\left[\left(\mathbf{C y} \mathbf{3}_{3}\right)_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{R u}=\mathbf{C}-\mathbf{P d}\left(\mathbf{M o C p}{ }^{\prime}\right)_{3} \mathbf{S}_{\mathbf{4}}\right] \mathbf{O T s}(\mathbf{1}) .{ }^{1} \mathrm{H}-\mathrm{NMR}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 5.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.67-2.51(\mathrm{~m}, 6 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 12 \mathrm{H}), 2.02(\mathrm{~s}, 9 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 12 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 12 \mathrm{H})$, $1.35-1.22(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 429.75,144.78,138.52,128.43,126.32,115.70$, 95.48, $93.81,32.56(\mathrm{t}, J=9.6 \mathrm{~Hz}), 30.51,28.23(\mathrm{t}, J=5.1 \mathrm{~Hz}), 26.76,21.45,15.68 .{ }^{31} \mathrm{P}-\mathrm{NMR}, 121 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \delta: 35.53$. $\mathrm{ESI}^{+} \mathrm{MS}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{m} / z$, f/c: $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Pd}\left(\mathrm{MoCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right]^{+} 1505.02 / 1504.98$. Elemental analysis, calculated for $\mathrm{C}_{62} \mathrm{H}_{94} \mathrm{Cl}_{2} \mathrm{Mo}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{PdRuS}_{5} \cdot 3 / 4 \mathrm{CHCl}_{3}: \mathrm{C}: 42.69 \%, \mathrm{H}: 5.41 \%$; found C: 42.72\%, H: 5.25\%.
$\left[\left(\mathbf{C y}_{3} \mathbf{P}\right)_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{R u} \equiv \mathbf{C}-\mathbf{P t}\left(\mathbf{M o C p}{ }^{\prime}\right)_{3} \mathbf{S}_{4}\right] \mathbf{O T s}(\mathbf{2}) .{ }^{1} \mathrm{H}-\mathrm{NMR}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.11 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.71-5.65(\mathrm{~m}, 6 \mathrm{H}), 5.65-5.58(\mathrm{~m}, 6 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $2.18-2.07(\mathrm{~m}, 12 \mathrm{H}), 2.10(\mathrm{~s}, 9 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 12 \mathrm{H}), 1.82-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 12 \mathrm{H}), 1.35$ $-1.23(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 385.41$ ( s and d, $J=2416.6 \mathrm{~Hz}$ ), 144.72, 138.57, 128.45,
126.33, 114.97, 94.60, 93.06, $32.92(\mathrm{t}, J=9.4 \mathrm{~Hz}), 30.65,28.23(\mathrm{t}, J=4.5 \mathrm{~Hz}), 26.72,21.46,15.61 .{ }^{31} \mathrm{P}-$ NMR, $121 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 32.75$. $\mathrm{ESI}^{+} \mathrm{MS}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{m} / z, \mathrm{f} / \mathrm{c}:\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Pt}(\mathrm{MoCp})_{3} \mathrm{~S}_{4}\right]^{+}$ 1594.05 / 1593.04 (the carbide ligand was ${ }^{13} \mathrm{C}$-labelled, explaining the $\mathrm{m} / \mathrm{z}$ gain of 1 ). Elemental analysis, calculated for $\mathrm{C}_{62} \mathrm{H}_{94} \mathrm{Cl}_{2} \mathrm{Mo}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{PtRuS}_{5} \cdot 3 / 4 \mathrm{CHCl}_{3}: \mathrm{C}: 40.65 \%, \mathrm{H}: 5.15 \%$; found $\mathrm{C}: 40.86 \%, \mathrm{H}: 5.18 \%$. $\left[\left(\mathbf{C y}_{3} \mathbf{P}\right)_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{R u}=\mathbf{C}-\mathbf{P d}\left(\mathbf{W C p}{ }^{\prime}\right){ }_{3} \mathbf{S}_{\mathbf{4}}\right] \mathbf{O T s}(\mathbf{3}) .{ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 7.84(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.91-5.83(2 \mathrm{~m}, 12 \mathrm{H}), 2.66-2.49(\mathrm{~m}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 9 \mathrm{H}), 2.16-1.99$ $(\mathrm{m}, 12 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 12 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 12 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (126 MHz, Chloroform- $d$ ) $\delta 421.40,144.83,138.51,128.44,126.32,114.60,94.07,91.44,32.49$ $(\mathrm{t}, J=9.5 \mathrm{~Hz}), 30.55,28.28,26.82,21.46,15.63 .{ }^{31} \mathrm{P}-\mathrm{NMR}, 121 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 34.63 . \mathrm{FAB}^{+} \mathrm{MS}, m-$ $\mathrm{NBA}, m / z, \mathrm{f} / \mathrm{c}:\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Pd}(\mathrm{WCp})_{3} \mathrm{~S}_{4}\right]^{+} 1769.6 / 1769.12$, $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{Pd}(\mathrm{WCp})_{3} \mathrm{~S}_{4}-\right.$ $\left.\mathrm{PCy}_{3}\right]^{+} 1488.8 / 1488.88,\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{Pd}\left(\mathrm{WCp}^{\prime}\right)_{3} \mathrm{~S}_{4}-\mathrm{PCy}_{3}-\mathrm{Cl}\right]^{+} 1453.1 / 1451.92$, $\left[\operatorname{Pd}\left(\mathrm{WCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right]^{+} 1023.6 / 1022.81,\left[\left(\mathrm{WCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right]^{+} 917.0 / 916.91$. Elemental analysis, calculated for $\mathrm{C}_{62} \mathrm{H}_{94} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{PdRuS}_{5} \mathrm{~W}_{3} \cdot 1.5 \mathrm{CHCl}_{3}: \mathrm{C}: 36.00 \%, \mathrm{H}: 4.54 \%$; found $\mathrm{C}: 36.10 \%, \mathrm{H}: 4.25 \%$.
$\left[(\mathbf{C y 3} \mathbf{P})_{\mathbf{2}} \mathbf{C l}_{2} \mathbf{R u}=\mathbf{C}-\mathbf{P t}\left(\mathbf{W C p}{ }^{\prime}\right)_{3} \mathbf{S S}_{4}\right] \mathbf{O T s}(\mathbf{4}) .{ }^{1} \mathrm{H}-\mathrm{NMR}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.78(\mathrm{~m}, 6 \mathrm{H}), 5.76-5.72(\mathrm{~m}, 6 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}$, $9 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 12 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 12 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 12 \mathrm{H}), 1.34-1.24$ $(\mathrm{m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 378.15(\mathrm{t}, J=5.5 \mathrm{~Hz}$ and d, $J=2600.4 \mathrm{~Hz}), 144.74,138.59$, 128.47, 126.31, 113.85, 93.09, 90.48, $32.83(\mathrm{t}, J=9.5 \mathrm{~Hz}), 30.68,28.27(\mathrm{t}, J=4.9 \mathrm{~Hz}), 26.79,21.46$, 15.50. ${ }^{31} \mathrm{P}-\mathrm{NMR}, 121 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta: 31.97$. $\mathrm{FAB}^{+} \mathrm{MS}$, $m$-NBA matrix, $m / z$, f/c: $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\right.$ $\left.\operatorname{Pt}(\mathrm{WCp})_{3} \mathrm{~S}_{4}\right]^{+} 1855.6 / 1857.18, \quad\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{Pt}(\mathrm{WCp})_{3} \mathrm{~S}_{4}-\mathrm{PCy}_{3}\right]^{+} 1574.2 / 1576.94$, $\left[\left(\mathrm{WCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right]^{+} 915.8 / 916.91$. Elemental analysis, calculated for $\mathrm{C}_{62} \mathrm{H}_{94} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{PtRuS}_{5} \mathrm{~W}_{3} \cdot 1 / 2 \mathrm{CHCl}_{3}$ : C : $35.95 \%$, $\mathrm{H}: 4.56 \%$; found $\mathrm{C}: 36.01 \%, \mathrm{H}: 4.32 \%$.
$\left[\left(\mathbf{C y} \mathbf{3}_{\mathbf{P}} \mathbf{P}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{R u} \equiv \mathbf{C}-\mathbf{C u}(\mathbf{t t e n})\right] \mathbf{B F}_{4} \mathbf{( 5 )}\right.$. Under a nitrogen atmosphere, $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right] \mathrm{BF}_{4}(13.8 \mathrm{mg}, 43.9$ $\mu \mathrm{mol})$ and $\mathrm{ttcn}(7.9 \mathrm{mg}, 44 \mu \mathrm{~mol})$ were dissolved in 10 ml nitrogen-purged acetonitrile and heated to reflux temperature for one hour. During this time, the initially intense yellow colour fainted to become nearly colourless. RuC ( $32.7 \mathrm{mg}, 43.9 \mu \mathrm{~mol}$ ) in 10 ml nitrogen-purged chloroform was added, and the solution was kept at reflux temperature for 15 minutes. The solvents were evaporated off, and the dry residue was dissolved in 1 ml chloroform. Diethyl ether vapour was allowed to diffuse into the solution over 2 days. Yellow crystals of $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{Cu}(\operatorname{ttcn})\right] \mathrm{BF}_{4}$ (5) were decanted off, washed with
diethyl ether ( $2 \times 2 \mathrm{ml}$ ), and dried in vacuo. Yield of $\mathbf{5}$ : $39.1 \mathrm{mg}, 36.4 \mu \mathrm{~mol}, 82.8 \%$ based on RuC. ${ }^{1} \mathrm{H}-$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 3.14-3.01(\mathrm{~m}, 6 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 6 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 6 \mathrm{H}), 2.19-2.05$ $(\mathrm{m}, 12 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 12 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 12 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 431.69,32.41,32.03(\mathrm{t}, J=9.9 \mathrm{~Hz}), 30.26,28.06(\mathrm{t}, J=5.2 \mathrm{~Hz}), 26.54 .{ }^{31} \mathrm{P}-$ NMR, $121 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 41.02 .{ }^{19} \mathrm{~F}-\mathrm{NMR}, 282 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta:-152.62 . \mathrm{ESI}^{+} \mathrm{MS}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{m} / \mathrm{z}, \mathrm{f} / \mathrm{c}$ : $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{Cu}(\text { tten })\right]^{+} 989.26$ / 989.24. Elemental analysis, calculated for $\mathrm{C}_{43} \mathrm{H}_{78} \mathrm{BCl}_{2} \mathrm{CuF}_{4} \mathrm{P}_{2} \mathrm{RuS}_{3}: \mathrm{C}: 48.02 \%, \mathrm{H}: 7.31 \%$; found $\mathrm{C}: 47.85 \%, \mathrm{H}: 7.34 \%$.
$\left[\left(\mathbf{C y} \mathbf{3}_{\mathbf{P}}\right)_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \mathbf{R u} \equiv \mathbf{C}-\mathbf{A g}(\mathbf{t t c n})\right] \mathbf{O T f} \mathbf{( 6 ) .}[\mathrm{Ag}(\mathrm{ttcn})]_{4}(\mathrm{OTf})_{4}(10.2 \mathrm{mg}, 5.83 \mu \mathrm{~mol})$ and $\mathbf{R u C}(17.4 \mathrm{mg}, 23.4$ $\mu \mathrm{mol}$ ) were dissolved in 5 ml chloroform and heated to reflux temperature for one hour. After filtering, the solvent was evaporated off, leaving a yellow residue of $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Ag}(\mathrm{ttcn})\right] \mathrm{OTf}$ that was washed with diethyl ether ( $3 \times 5 \mathrm{ml}$ ), and dried in vacuo. Yield of $6 \cdot 1 / 3 \mathrm{CHCl}_{3}: 24.7 \mathrm{mg}, 20.2 \mu \mathrm{~mol}$, $86.5 \%$ based on RuC. ${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 3.30-3.07(\mathrm{~m}, 6 \mathrm{H}), 2.84-2.59(\mathrm{~m}, 12 \mathrm{H}), 2.23-$ $2.04(\mathrm{~m}, 12 \mathrm{H}), 1.94-1.69(\mathrm{~m}, 18 \mathrm{H}), 1.69-1.47(\mathrm{~m}, 12 \mathrm{H}), 1.40-1.19(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 126 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \delta: 431.84(\mathrm{~d}, J=175.4 \mathrm{~Hz}), 120.81(\mathrm{q}, J=320.2 \mathrm{~Hz}), 32.22(\mathrm{t}, J=9.9 \mathrm{~Hz}), 30.30,29.98,28.07$ $(\mathrm{t}, J=5.2 \mathrm{~Hz}), 26.55 .{ }^{31} \mathrm{P}-\mathrm{NMR}, 121 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 42.28 .{ }^{19} \mathrm{~F}-\mathrm{NMR}, 282 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta:-78.72$. $\mathrm{ESI}^{+} \mathrm{MS}, \mathrm{CH}_{3} \mathrm{CN}, m / z$, f/c: $\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{Ag}(\mathrm{ttcn})\right]^{+} 1033.23 / 1033.22$. Elemental analysis, calculated for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{AgCl}_{2} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{RuS}_{4} \cdot 1 / 3 \mathrm{CHCl}_{3}: \mathrm{C}: 43.58 \%, \mathrm{H}: 6.46 \%$; found $\mathrm{C}: 43.61 \%, \mathrm{H}: 6.39 \%$.
$\left[\left(\mathbf{C y}_{3} \mathbf{P}\right)_{\mathbf{2}} \mathbf{C l}_{2} \mathbf{R u}=\mathbf{C}-\mathbf{A u}(\mathbf{t t e n})\right] \mathbf{O T f} \mathbf{( 7 )} \mathbf{. ~} \mathrm{AuCl}($ tht $)(1.7 \mathrm{mg}, 5.3 \mu \mathrm{~mol})$ and $\left[\mathrm{Ag}(\text { tht })_{2}\right] \mathrm{OTf}(2.3 \mathrm{mg}, 5.3$ $\mu \mathrm{mol}$ ) were dissolved in $0.3 \mathrm{ml} \mathrm{CDCl}_{3}$ and stirred for 5 minutes, producing a white precipitate of AgCl . With an additional $0.3 \mathrm{ml} \mathrm{CDCl}_{3}$, $\operatorname{ttcn}(1.0 \mathrm{mg}, 5.5 \mu \mathrm{~mol})$ was added, and the solution was stirred for five minutes. Finally, $\mathbf{R u}{ }^{13} \mathbf{C}\left(4.0 \mathrm{mg}, 5.4 \mu \mathrm{~mol}\right.$ in $\left.0.2 \mathrm{ml} \mathrm{CDCl}_{3}\right)$ was added, the solution was stirred for ten minutes and analysed by NMR. As 7 decomposes and occurs along with $\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{AuCl}$ and tht, the most informative spectroscopic data are: ${ }^{13} \mathrm{C}-\mathrm{NMR}, 126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 414.12(\mathrm{t}, J=5.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}-$ NMR, $121 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta: 40.70 . \mathrm{ESI}^{+} \mathrm{MS}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{m} / \mathrm{z}, \mathrm{f} / \mathrm{c}:\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{Au}(\mathrm{ttcn})\right]^{+} 1123.31 /$ 1123.28. For spectra, see Figures S10 - S14.

Conversion of 5 to 3. Solid $5(1.1 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ was dissolved in $0.5 \mathrm{ml} \mathrm{CDCl}_{3}$; the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{31} \mathrm{P}-$ NMR spectra showed only resonances from 5. [(WCp' $\left.)_{3} \mathrm{~S}_{4} \mathrm{Pd}(\mathrm{dba})\right] \mathrm{OTs}(1.4 \mathrm{mg}, 0.98 \mu \mathrm{~mol})$ was added to the solution. After 15 minutes, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra showed only resonances from 5. After 21 h ,
resonances from $\mathbf{3}$ and $\mathbf{5}$ were visible, having the ratio 2:5 (by ${ }^{1} \mathrm{H}$ integrals, see Figure S 15 ) and 1:3 (by ${ }^{31} \mathrm{P}$ integrals, see Figure S16).

## Physical measurements

NMR-spectroscopy: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra were recorded on a 300 MHz Varian instrument. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were recorded on a 500 MHz Bruker instrument with a cryoprobe, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a 300 MHz Varian instrument or a 500 MHz Bruker instrument with a cryoprobe. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were referenced to residual solvent signals $\left(\mathrm{CDCl}_{3}: \delta=7.26\right.$, ${ }^{1} \mathrm{H}$, and $\left.77.16 \mathrm{ppm},{ }^{13} \mathrm{C}\right) .{ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ signals were referenced to the deuterium resonances arising from the solvents.

Mass spectrometric measurements were carried out on a Jeol four sector instrument (FAB, with mnitrobenzylalcohol [m-NBA] as matrix) or on a Bruker Solarix XR ESI/MALDI FT-ICR MS instrument (ESI, acetonitrile containing formic acid as solvent).

Elemental analyses were performed by the microanalytical services of the Department of Chemistry, University of Copenhagen.
$X$-ray crystallographic studies employed single crystals of $\mathbf{1 - 6}$ that were coated with mineral oil, placed on nylon loops, and mounted in the nitrogen cold stream of the diffractometer. The single-crystal X-ray diffraction studies were performed at 122(2) K on a Bruker D8 VENTURE diffractometer equipped with a Mo $K \alpha$ high-brilliance $\mathrm{I} \mu \mathrm{S}$ radiation source ( $\lambda=0.71073 \AA$ ), a multilayer X-ray mirror and a PHOTON 100 CMOS detector, and an Oxford Cryosystems low temperature device. The instrument was controlled with the APEX2 software package using SAINT. ${ }^{10}$ Final cell constants were obtained from least squares fits of several thousand strong reflections. Intensity data were corrected for absorption using intensities of redundant reflections with the program SADABS. ${ }^{11}$ The structures were solved in Olex 2 using the olex2.solve ${ }^{12}$ program (Charge Flipping) and refined using the olex 2. refine program ${ }^{13}$ or SHELXL. ${ }^{14}$ All non-hydrogen atoms were refined anisotropically; in disordered fragments, the least occupant parts were refined isotropically, if necessary. Hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters ( $U_{\mathrm{iso}}=1.2 U_{\mathrm{eq}}$ of the parent atom, except for methyl hydrogens which were constrained to $1.5 U_{\mathrm{eq}}$ of the parent atom). Disorder was treated with appropriate choices of the EADP, ISOR, and SADI commands. CCDC entries 1433236-1433241 contain the crystallographic data reported herein. These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Selected crystallographic details are listed in Table S1 below.

Table S1. Crystallographic data for $\mathbf{1 - 6}$.


Electrochemical measurements were carried out under a nitrogen atmosphere with anhydrous dichloromethane as the solvent and with tetrabutylammonium hexafluorophosphate as the electrolyte ( 0.20 m ). The instrumentation has been described meticulously by Zanello. ${ }^{15}$ The reference electrode used for the measurements of $\mathbf{1}-\mathbf{3}$ was a $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{KCl})$ electrode rather than a saturated calomel electrode, which previously was used to measure the analogous $\mathrm{PPh}_{3}$ complexes. ${ }^{3}$ The cyclic voltammograms shown below (Figures $\mathrm{S} 17-\mathrm{S} 19$ ) are referenced to the $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{KCl})$ electrode. To allow comparisons between $\mathrm{M}_{3} \mathrm{~S}_{4} \mathrm{ML}$ systems with $\mathrm{L}=\mathrm{PPh}_{3}$ and $\mathbf{R u C}$, the square wave voltammetry potentials are referenced to the ferrocene-ferrocenium redox couple rather than the reference electrodes, taking $E^{\Theta}{ }_{2+13+}$ of ferrocene as 0 .

## Supporting figures



Figure S1. Representation of the decomposition product, $\left[\left(\mathrm{WCp}^{\prime}\right)_{3} \mathrm{~S}_{4}\right]\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}-\mathrm{PtCl}_{3}\right]$, which forms when $\mathbf{4}$ is left in chloroform solution for prolonged periods. Cp' and Cy of are shown as wireframe. The structure was solved partially. Unit cell data: triclinic $P-1, a=11.610(2) \AA, b=13.640(3) \AA, c=$ $24.753(5) \AA, \alpha=95.001(6)^{\circ}, \beta=103.462(6)^{\circ}, \gamma=112.757(6)^{\circ}, V=3446.1 \AA^{3}$.


Figure S2. ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2}$. The signals at 0.88 ppm and 5.75 ppm arise from traces of pentane and cyclopentadienide.


Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 2, magnification. The signal at 1.76 arises from a trace of water.


Figure S4. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2}$.


Figure S5. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of 2.


Figure S6. ${ }^{1} \mathrm{H}$-NMR spectrum of 5.


Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 5, magnification. The signals at 3.48 ppm and 1.69 arise from traces of diethyl ether and water.


Figure S8. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 5.


Figure S9. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of 5.


Figure S10. ${ }^{13} \mathrm{C}$-NMR spectrum of the reaction mixture containing 7.


Figure S11. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of the reaction mixture containing 7. The resonance at 43.87 ppm arises from $\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{C}-\mathrm{AuCl}\left[\delta\left({ }^{31} \mathrm{P}\right)=43.86 \mathrm{ppm}\right] .{ }^{8}\left\{\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru} \equiv \mathrm{C}\right\}_{2} \mathrm{Au}^{+}$is absent $\left[\delta\left({ }^{31} \mathrm{P}\right)=51.11\right.$ $\mathrm{ppm}] .{ }^{8}$

## Generic Display Report



Figure S12. ESI ${ }^{+}$MS spectrum of 7.


| Bruker Compass DataAnalysis 4.2 printed: 11/10/2014 9:04:02 AM by: Admin Page 1 of 1 |
| :--- | :--- | :--- |

Figure S13. ESI ${ }^{+}$MS spectrum of 7.


Figure S14. Simulated mass spectrum of the cation in 7. (Using mMass: Strohalm M., Kavan D., Novák P., Volný M., Havlíček V., Anal Chem 82 (11), 4648-4651 (2010), DOI: 10.1021/ac 100818g)


Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ : conversion of $\mathbf{5}$ (multiplet at 2.68 ppm ) to $\mathbf{3}$ (multiplet at 2.57 ppm ) upon reaction with $\left[\left(\mathrm{WCp}^{\prime}\right)_{3} \mathrm{~S}_{4} \mathrm{Pd}(\mathrm{dba})\right] \mathrm{OTs}$. Spectra 1 and 2 were recorded after 15 min and 21 h .


Figure S16. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ : conversion of $\mathbf{5}$ (resonance at 39.8 ppm ) to $\mathbf{3}$ (resonance at 33.7 ppm ) upon reaction with $\left[(\mathrm{WCp})_{3} \mathrm{~S}_{4} \mathrm{Pd}(\mathrm{dba})\right] \mathrm{OTs}$. Spectra 1 and 2 were recorded after 15 min and 21 h .


Figure S17. Cyclic voltammogram of $\mathbf{1}$. The potentials are referenced to the $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{~m} \mathrm{KCl})$ electrode. Scan rate: $0.4 \mathrm{~V} \mathrm{~s}^{-1}$.


Figure S18. Cyclic voltammogram of 2. The potentials are referenced to the $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{~m} \mathrm{KCl})$ electrode. Scan rate: $0.2 \mathrm{~V} \mathrm{~s}^{-1}$.


Figure S19. Cyclic voltammogram of 3. The potentials are referenced to the $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{~m} \mathrm{KCl})$ electrode. Scan rate: $1.0 \mathrm{~V} \mathrm{~s}^{-1}$.


Figure S20. Histogram with Ru-C distances from the Cambridge Structural Database v. 1.17, and a zoom on the range where the Ru-C distance in 6 falls (shortest $0.01 \%$ ).


Figure S21. Histograms with $\mathrm{M}-\mathrm{C}$ distances $(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}, \mathrm{Cu}$, and Ag$)$ from the Cambridge Structural Database v. 1.17. RuC-M distances are indicated by arrows.

## References

1. S. R. Caskey, M. H. Stewart, J. E. Kivela, J. R. Sootsman, M. J. A. Johnson and J. W. Kampf, J. Am. Chem. Soc., 2005, 127, 16750-16751.
2. K. Herbst, B. Rink, L. Dahlenburg and M. Brorson, Organometallics, 2001, 20, 3655-3660.
3. K. Herbst, P. Zanello, M. Corsini, N. D'Amelio, L. Dahlenburg and M. Brorson, Inorg. Chem., 2003, 42, 974-981.
4. D. Sellmann and L. Zapf, Angew. Chem., 1984, 96, 799-800.
5. G. J. Kubas, B. Monzyk and A. L. Crumbliss, in Inorg. Synth., John Wiley \& Sons, Inc., 1979, vol. 19, pp. 90-92.
6. P. J. Blower, J. A. Clarkson, S. C. Rawle, J. R. Hartman, R. E. Wolf, R. Yagbasan, S. G. Bott and S. R. Cooper, Inorg. Chem., 1989, 28, 4040-4046.
7. R. Uson, A. Laguna, M. Laguna, D. A. Briggs, H. H. Murray and J. P. Fackler, in Inorg. Synth., John Wiley \& Sons, Inc., 1989, vol. 26, pp. 85-91.
8. A. Reinholdt, J. E. Vibenholt, T. J. Morsing, M. Schau-Magnussen, N. E. A. Reeler and J. Bendix, Chem. Sci., 2015, 6, 5815-5823.
9. R. Uson, J. Fornies, M. Tomas, I. Ara, J. M. Casas and A. Martin, J. Chem. Soc., Dalton Trans., 1991, DOI: 10.1039/DT9910002253, 2253-2264.
10. Bruker; Bruker AXS, Inc. SAINT, Version 7.68A; Bruker AXS: Madison, WI, 2009.
11. G. Sheldrick, SADABS, Version 2008/2; University of Göttingen: Germany, 2003.
12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
13. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Crystallogr., Sect. A, 2015, 71, 59-75.
14. G. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.
15. P. Zanello, F. Laschi, M. Fontani, C. Mealli, A. Ienco, K. Tang, X. Jin and L. Li, J. Chem. Soc., Dalton Trans., 1999, DOI: 10.1039/A807500J, 965-970.
