Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Core-shell nanoparticles by silica coating of metal oxides in a dual-stage hydrothermal flow reactor

Henrik L. Hellstern¹, Aref Mamakhel¹, Martin Bremholm¹, Bo B. Iversen¹*

¹Center for Materials Crystallography (CMC), Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

* Corresponding author: bo@chem.au.dk

Content of supporting information

Experimental setup

PXRD and Rietveld Refinements

STEM analysis

FTIR

Experimental Setup

An outline of the configuration of the dual-stage continuous flow reactor is shown in Figure S1

Figure S1: Diagram of dual-stage flow reactor. TEOS was used for Reactant #2 and mixed with the nanoparticle suspension synthesized in the primary reactor. The mixture is subsequently heated in the secondary reactor.

PXRD and **Rietveld** Refinements

 α -Fe₂O₃ was synthesized at temperatures of 250°C and above. Diffraction patterns are shown in Figure S2. Figure S3 shows the hematite crystal size for different temperatures. Parameters from the Rietveld refinements are listed below. SiO₂ is amorphous, and all cell parameters are of the metal oxide.

Figure S2: Diffraction patterns for α -Fe₂O₃ synthesized at different temperatures.

Figure S3: Calculated Fe_2O_3 crystal sizes. The deposition of a silica shell has no significant effect on the core crystal size. The effect of increased reaction rates at higher temperatures is offset by the decrease in residence time caused by the solvent expansion in the supercritical region.

Table S1: Parameters from Rietveld refinements.

α-Fe ₂ O ₃ , 250°C		α-Fe ₂ O ₃ , 300°C	
a = b (Å)	5.0450(2)	<i>a</i> (Å)	5.0448(1)
<i>c</i> (Å)	13.786(6)	<i>c</i> (Å)	13.7774(4)
x = y (Fe1)	0	x = y (Fe1)	0
<i>z</i> (Fe1)	0.3525(1)	<i>z</i> (Fe1)	0.3532(1)
<i>x</i> (O1)	0.315(2)	<i>x</i> (O1)	0.314(2)
y (O1)	0	y (O1)	0
z (O1)	0.25	z (01)	0.25
$B_{\rm iso}({\rm Fe1})/{\rm \AA}^2$	0.25	$B_{\rm iso}$ (Fe1) / Å ²	0.25
$B_{\rm iso}$ (O1) / Å ²	0.5	$B_{\rm iso}$ (O1) / Å ²	0.5
Х	0	Х	0
Y	0.284(1)	Y	0.2295(9)
Size (nm)	19.8(1)	Size (nm)	24.5(1)
R _{Bragg}	8.16	R _{Bragg}	6.48
R _F	7.48	R _F	5.37

α-Fe ₂ O ₃ , 350°C		α-Fe ₂ O ₃ , 400°C	
a = b (Å)	5.0446(1)	a = b (Å)	5.0451(1)
<i>c</i> (Å)	13.7774(4)	<i>c</i> (Å)	13.7779(4)
x = y (Fe1)	0	x = y (Fe1)	0
<i>z</i> (Fe1)	0.3532(1)	<i>z</i> (Fe1)	0.3533(1)
<i>x</i> (O1)	0.316(2)	<i>x</i> (O1)	0.315(2)
y (O1)	0	y (O1)	0
z (O1)	0.25	z (O1)	0.25
$B_{\rm iso}({\rm Fe1})/{\rm \AA}^2$	0.25	$B_{\rm iso}({\rm Fe1})/{\rm \AA}^2$	0.25
$B_{\rm iso}$ (O1) / Å ²	0.5	$B_{\rm iso}$ (O1) / Å ²	0.5
Х	0	Х	0
Y	0.2158(9)	Y	0.2239(9)
Size (nm)	26.0(1)	Size (nm)	25.1(1)
R _{Bragg}	7.71	R _{Bragg}	7.35
R _F	6.08	R _F	6.18

α -Fe ₂ O ₃ @SiO ₂			
a = b (Å)	5.0452(1)		
<i>c</i> (Å)	13.7793(4)		
x = y (Fe1)	0		
<i>z</i> (Fe1)	0.3528(1)		
<i>x</i> (01)	0.3122(2)		
y (O1)	0		
z (O1)	0.25		
$B_{\rm iso}({\rm Fe1})/{\rm \AA}^2$	0.25		
$B_{\rm iso}\left({ m O1} ight)$ / Å ²	0.5		
Х	0		
Y	0.225(1)		
Size (nm)	25.0(1)		
R _{Bragg}	5.95		
R _F	4.73		

γ-Fe ₂ O ₃		γ -Fe ₂ O ₃ @SiO ₂	
a = b = c (Å)	8.3850(1)	a = b = c (Å)	8.3893(1)
x = y = z (Fe1)	1/8	x = y = z (Fe1)	1/8
x = y = z (Fe2)	1/2	<i>x</i> (Fe2)	1/2
x = y = z (O1)	0.2548(4)	<i>x</i> (O1)	0.2547(4)
$B_{\rm iso}({\rm Fe1})$ / Å ²	0.25	$B_{\rm iso}$ (Fe1) / Å ²	0.25
$B_{\rm iso}$ (Fe2) / Å ²	0.25	$B_{\rm iso}~({\rm Fe2})$ / Å ²	0.25
$B_{\rm iso}$ (O1) / Å ²	0.5	$B_{\rm iso}$ (O1) / Å ²	0.5
Х	0	Х	0
Y	0.299(1)	Y	0.302(2)
Size (nm)	18.81(9)	Size (nm)	18.6(1)
R _{Bragg}	2.41	R _{Bragg}	2.85
R _F	1.81	R _F	2.31

Anatase TiO ₂		TiO ₂ @SiO ₂	
a = b (Å)	3.7929(1)	a = b (Å)	3.7924(1)
<i>c</i> (Å)	9.5038(4)	<i>c</i> (Å)	9.4956(4)
<i>x</i> (Ti1)	0	<i>x</i> (Ti1)	0
y (Ti1)	1/4	y (Ti1)	1/4
<i>z</i> (Til)	3/8	<i>z</i> (Til)	3/8
<i>x</i> (O1)	0	<i>x</i> (O1)	0
y (O1)	1/4	y (O1)	1/4
z (01)	0.1672(2)	z (O1)	0.1684(2)
$B_{\rm iso}$ (Ti1) / Å ²	0.125	$B_{\rm iso}$ (Ti1) / Å ²	0.125
$B_{\rm iso}\left({ m O1} ight)/{ m \AA}^2$	0.5	$B_{\rm iso}\left({ m O1} ight)$ / Å ²	0.5
Х	0	Х	0
Y	0.773(3)	Y	0.864(3)
Size (nm)	7.26(3)	Size (nm)	6.51(3)
R _{Bragg}	2.96	R _{Bragg}	1.72
R _F	1.18	R _F	0.758

STEM analyses

 $\alpha\text{-}Fe_2O_3 \text{ nanoparticles without } SiO_2$

Figure S4: TEM of α -Fe₂O₃. Hematite forms nanoparticles around 20-30 nm of narrow size distribution. Scale bar is 200 nm

Figure S5: TEM of α -Fe₂O₃. Scale bar is 50 nm

Figure S6: HR-TEM image of hematite at high magnification. Crystalline planes can be seen. Scale bar 10 nm

α -Fe₂O₃@SiO₂ nanocomposites

Figure S7: TEM image of α -Fe₂O₃@SiO₂. The size distribution of core particles is in agreement with that of the uncoated hematite nanoparticles.

Figure S8: TEM of α -Fe₂O₃@SiO₂. A thin amorphous silica shell surrounds the hematite nanoparticles

Figure S9: TEM of α -Fe₂O₃@SiO₂. The silica shell is likely connected to neighboring composites.

Figure S10: HR-TEM of α -Fe₂O₃@SiO₂. An amorphous material of low scattering power surrounds the heavier crystalline core.

Figure S11: HAADF and EDX images of $\alpha\mbox{-}Fe_2O_3@SiO_2$ nanocomposites

 $\gamma\mbox{-}Fe_2O_3$ nanoparticles without SiO_2

Figure S12: TEM of γ -Fe₂O₃ nanoparticles synthesizes in the primary reactor stage. The nanoparticles have a narrow size distribution. Scale bar is 200 nm

Figure S13: TEM of γ -Fe₂O₃ nanoparticles. Particle size is around 20-30 nm. Scale bar is 100 nm

Figure S14: TEM of γ -Fe₂O₃ nanoparticles. The particles are isotropic in shape. Scale bar is 20 nm

Figure S15: HR-TEM of γ -Fe₂O₃ nanoparticles. Visible lattice planes indicate high crystallinity.

$\gamma \text{-} Fe_2O_3 @SiO_2 \text{ nanocomposites}$

Figure S16: TEM of γ -Fe₂O₃@SiO₂. Composites are of narrow size distribution. Particle sizes are similar to the uncoated sample.

Figure S17: TEM image of γ -Fe₂O₃@SiO₂.

Figure S18: HR-TEM image of γ -Fe₂O₃@SiO₂.

Figure S19: HAADF and EDX images of γ -Fe₂O₃@SiO₂ nanocomposites

Figure S20: The maghemite core particle is 4 nm smaller than the silica shell and thus the shell layer is 2 nm.

 TiO_2 nanoparticles without SiO_2

Figure S21: TEM of anatase nanoparticles. Scale bar is 100 nm

Figure S22: TEM of anatase nanoparticles. Scale bar is 20 nm. The nanoparticles are mainly isotropic in shape but a few are slightly elongated.

Figure S23: HR-TEM of titania nanoparticles. Particle size are around 10 nm

$TiO_2 @SiO_2 \ nanocomposites$

Figure S24: TEM of $TiO_2@SiO_2$. Particle shape is isotropic and sizes are comparable to uncoated titania

Figure S25: TEM of TiO₂@SiO₂.

Figure S26: HR-TEM of TiO₂@SiO₂. The lower scattering power and particle size of titania compared to the iron oxides makes it more difficult to observe the thin silica layers by TEM and HR-TEM.

Figure S27: TiO₂@SiO₂, HAADF image

Figure S28: Close up of Figure S27. HAADF and EDX images are displayed along with their superposition. The silica shell layer is 1-2 nm.

FTIR

The Si-O-Si bands of all three composites are clearly defined near 1100/cm.

Figure S29: FTIR spectra of α -Fe₂O₃ and α -Fe₂O₃@SiO₂. The dark red hematite powder becomes a lighter red when coated by silica which increases transmittance for the composite

Figure S30: FTIR spectra of γ -Fe₂O₃ and γ -Fe₂O₃@SiO₂. Transmittance only around 60% due to blackness of the powder

Figure S31: FTIR spectra of TiO_2 and $TiO_2@SiO_2$. Both powders are white.