Electronic Supplementary Information

Divergent reactivity of an indole glucosinolate yields Lossen or Neber rearrangement products: the phytoalexin rapalexin A or a unique β-Dglucopyranose fused heterocycle

M. Soledade C. Pedras,* Q. Huy To and Gabriele Schatte

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon SK S7N 5C9, Canada

1. GENERAL EXPERIMENTAL	3
2. COMPOUND SYNTHESIS AND CHARACTERIZATION	4
2.1 Synthesis of 1-MeSO ₂ -glucorapassicin A (9)	4
1-MeSO2-4-methoxyindole-3-carboxaldehyde (5a)	4
1-MeSO2-2',3',4',6'-tetra-O-acetyl- eta -D-glucopyranosylindole-3-thiohydroximate (7)	5
1-MeSO ₂ -2',3',4',6'-tetra-O-acetylglucorapassicin (8)	6
1-MeSO ₂ -glucorapassicin (9)	7
Compound X (14)	7
Methylated compound X (15)	8
1-MeSO2-rapalexin A (11)	9
1-MeSO ₂ -4-methoxyindole-3-carbonitrile (12)	9
2.2 Synthesis of 1-t-Boc-glucorapassicin A (10)	10
1-t-Boc-4-methoxy-indole-3-carboxaldehyde (5b)	11
1-t-Boc-2',3',4',6'-tetra-O-acetyl- eta -D-glucopyranosylindole-3-thiohydroximate (7a)	11
1-t-Boc-2',3',4',6'-tetra-O-acetylglucorapassicin (8a)	12
1-t-Boc-glucorapassicin (10)	13
Transformation of 1-MeSO2-glucorapassicin (9) in TFA/DCM	14
Transformation of 1-t-Boc-glucorapassicin (10) in TFA/DCM	14
One-pot synthesis of rapalexin A (4)	15
3. NMR SPECTRA OF NEW COMPOUNDS	16
1-MeSO ₂ -4-methoxyindole-3-carboxaldehyde (5a)	16
1-MeSO2-2',3',4',6'-tetra-O-acetyl- eta -D-glucopyranosylindole-3-thiohydroximate (7)	16
1-MeSO ₂ -2',3',4',6'-tetra-O-acetylglucorapassicin (8)	16
1-MeSO ₂ -glucorapassicin (9)	16
Compound X (14)	16
Methylated compound X (15)	16
1-MeSO2-rapalexin A (11)	16
1-MeSO ₂ -4-methoxyindole-3-carbonitrile (12)	16
1-t-Boc-4-methoxy-indole-3-carboxaldehyde (5b)	16
1-t-Boc-2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosylindole-3-thiohydroximate (7a)	16
1-t-Boc-2',3',4',6'-tetra-O-acetylglucorapassicin (8a)	16
1-t-Boc-glucorapassicin (10)	16

1. General experimental

Solvents were HPLC grade and used as such. Flash column chromatography (FCC) was carried out using silica gel grade 60, mesh size 230-400 Å or WP C18 prep-scale bulk packing 275 Å (J.T. Baker, NJ, USA). Nuclear magnetic resonance (NMR) spectra were recorded on Bruker 500 MHz Avance spectrometers (for ¹H, 500.3 MHz and for ¹³C, 125.8 MHz); chemical shifts (δ) are reported in parts per million (ppm) relative to TMS; spectra were calibrated using solvent peaks; spin coupling constants (J) are reported to the nearest 0.5 Hz. Fourier transform infrared (FTIR) data were recorded on a spectrometer Bio-Rad FTS-40 and spectra were measured by the diffuse reflectance method on samples dispersed in KBr. MS data [high resolution (HR), electron impact (EI)] were obtained on a VG 70 SE mass spectrometer employing a solids probe, or on a Jeol AccuToF GCv 4G mass spectrometer [field desorption (FD)] by direct insertion HPLC-DAD analysis was carried out with Agilent 1100 and 1200 series systems equipped with quaternary pumps, autosamplers, diode array detectors (DAD, wavelength range 190-600 nm, bandwidth 4 nm), degassers and Zorbax Eclipse XDB-C18 columns (5 μ L particle size silica, 150 x 4.6 mm I.D.), equipped with an in-line filter. Method A (non-polar metabolites) used the mobile phase H₂O-CH₃CN from 75:25 to 25:75, linear gradient for 35 min, and a flow rate of 1.0 mL/min; method B (polar metabolites) used the mobile phase H₂O-CH₃CN from 100:0 to 50:50 linear gradient for 25 min, followed by 50:50 to 25:75 linear gradient for 10 min and a flow rate of 1.0 mL/min. HPLC-DAD-ESI-MS analysis was carried out with an Agilent 1100 series HPLC system equipped with an autosampler, binary pump, degasser, and a diode array detector connected directly to a mass detector (Agilent G2440A MSD-Trap-XCT ion trap mass spectrometer) with an electrospray ionization (ESI) source. Chromatographic separations were carried out at room temperature using an Eclipse XDB-C-18 column (5 μ L particle size silica, 150 mm x 4.6 mm I.D.). The mobile phase (method C) consisted of a linear gradient of H₂O (containing 0.2% HCO₂H) - CH₃CN (containing 0.2% HCO₂H) from 75:25 to 25:75 in 25 min and a flow rate of 1.0 mL/min. Data acquisition was carried out in positive and negative polarity modes in a single LC run, and data processing was carried out with Agilent Chemstation Software.

2. Compound synthesis and characterization

2.1 Synthesis of 1-MeSO₂-glucorapassicin A (9)

Scheme 1S Synthesis of 1-MeSO₂-glucorapassicin A (9).

1-MeSO₂-4-methoxyindole-3-carboxaldehyde (5a)

A solution of 4-methoxyindole-3-carboxaldehyde (**5**) (235 mg, 1.34 mmol) in THF (3.0 mL) was added dropwise to a suspension of NaH (160 mg, 4.03 mmol) in dried THF (3.0 mL) at 0 °C. After stirring at rt for 30 min, MeSO₂Cl (310 μ L, 4.03 mmol) was added dropwise and the reaction mixture was stirred for 2 h. The reaction mixture was diluted with H₂O and extracted with EtOAc. The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (EtOAc-hexane, 1:3) to give **5a** (240 mg, 0.95 mmol, 71%) as a white solid, mp 141 – 142 °C. HPLC: $t_{\rm R} = 13.8$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 10.47 (1H, s, CHO), 8.05 (1H, s, H-2), 7.48 (1H, d, J = 8.0 Hz, H-7), 7.34

(1H, t, J = 8.0 Hz, H-6), 6.82 (1H, d, J = 8.0 Hz, H-5), 3.97 (3H, s, OMe), 3.24 (3H, s, SO₂Me). ¹³C NMR (125 MHz, CDCl₃): δ 188.3 (CHO), 154.6 (C-4), 136.3 (C-7a), 128.5 (C-6), 127.0 (C-2), 122.1 (C-3), 117.5 (C-3a), 106.0, 105.2 (C-7, C-5), 55.7 (OMe), 41.8 (SO₂Me). HREI-MS *m/z* [M]⁺: calc. for C₁₁H₁₁NO₄S: 253.0409, found 253.0400 (23%), 268.06 (100%), 189.08 (59%), 116.05 (28%), 299.08 (24%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm): 241, 312. FTIR (KBr, cm⁻¹) v_{max} : 3000, 1677, 1534, 1502, 1374, 1269, 1181, 1175, 1101, 954, 779.

A solution of NH₂OH.HCl (88 mg, 1.26 mmol) and Na₂CO₃ (67 mg, 0.63 mmol) in H₂O (1.0 mL) was added to a solution of compound **5a** (160 mg, 0.63 mmol) in ethanol (5.0 mL) at 60 °C. After stirring at 80 °C for 3 h, the reaction mixture was concentrated, diluted with H₂O and the resulting solution was extracted with EtOAc. The organic extract was dried over Na₂SO₄ and concentrated to give oxime **6** (165 mg, 0.62 mmol, 98% yield), which was used for the next step without further purification.

NCS (49 mg, 0.37 mmol) was added in portions to a solution of oxime **6** (100 mg, 0.37 mmol) in pyridine (0.3 mL) and dry CH₂Cl₂ (3.0 mL) at 0 °C. After stirring at rt for 30 min, a solution of thioβ-D-glucose tetraacetate (122 mg, 0.34 mmol) and triethylamine (150 μ L, 1.11 mmol) in CH₂Cl₂ (1.0 mL) was added. The mixture was stirred at rt for 3 h, concentrated to ca. one third, diluted with toluene and concentrated to dryness. The crude reaction mixture was separated by FCC (EtOAc-hexane, 1:1) to yield **7** (215 mg, 0.34, 90% yield) as a yellow solid, mp 111 – 112 °C. HPLC: $t_{\rm R} = 17.1$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 9.10 (br, 1H, NOH), 7.56 (1H, d, J = 8.0 Hz, H-7), 7.54 (1H, s, H-2), 7.39 (1H, t, J = 8.0 Hz, H-6), 6.79 (1H, d, J = 8.0 Hz, H-5), 5.02 (1H, dd, J = 10.0, 9.0 Hz, H-2), 4.95 (1H, t, J = 9.5 Hz, H-4), 4.90 (1H, t, J = 9.0 Hz, H-3), 4.41 (1H, d, J = 10.0 Hz, H-1), 3.98 (1H, dd, J = 12.5, 3.5 Hz, H-6), 3.89 (3H, s, OMe), 3.57 (1H, dd, J = 12.5, 2.0 Hz, H-6), 3.22 (3H, s, SO₂Me), 2.77-2.74 (1H, m, H-5), 2.07 (3H, s), 2.03 (3H, s), 1.95 (3H, s), 1.92 (3H, s, 4 x OAc).¹³C NMR (125 MHz, CDCl₃): δ 170.8 , 170.3, 169.4, 169.4 (4 x OAc), 154.0 (C-4), 148.8 (C=N), 135.9 (C-7a), 127.5 (C-6), 126.2 (C-2), 119.0 (C-3), 112.6 (C-3a), 106.1 (C-7), 105.1 (C-5), 81.3 (C-1), 75.8 (C-5), 73.9 (C-3), 69.6 (C-2), 67.6 (C-4), 61.2 (C-6), 55.9 (OMe), 41.5 (SO₂Me), 20.9, 20.8, 20.7, 20.7 (4 x OAc). HR-ESI-MS *m*/*z* [M+H]⁺: calc. for C₂₅H₃₁N₂O₁₃S₂: 631.1262, found 631.1244 (59%), 169.05 (100%), 109.03 (95%), 331.11 (62%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm): 218, 254, 290. FTIR (KBr, cm⁻¹) v_{max} : 1753, 1371, 1228, 1107, 1043, 963, 782.

Sulfur trioxide pyridine complex (239 mg, 1.50 mmol) was added to a solution of **7** (192 mg, 0.30 mmol) in dry DCM (5.0 mL) at rt. The mixture was stirred at 40 °C for 18 h, was concentrated, diluted with H₂O and was extracted with MeOH–CHCl₃ (1:4). The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (MeOH-DCM, 1:9) to yield **8** (193 mg, 0.27 mmol, 91%) as a white solid, mp 120 – 121 °C. HPLC: $t_{\rm R} = 17.6$ min (method B). ¹H NMR (500 MHz, MeOD): δ 7.73 (1H, s, H-2), 7.58 (1H, d, J = 8.0 Hz, H-7), 7.43 (1H, t, J = 8.0 Hz, H-6), 6.92 (1H, d, J = 8.0 Hz, H-5), 5.03-4.95 (2H, m, H-2, 4), 4.92-4.87 (1H, m, H-3), 4.65 (1H, d, J = 10.0 Hz, H-1), 3.95 (1H, dd, J = 12.5, 3.5 Hz, H-6), 3.94 (3H, s, OMe), 3.51 (1H, dd, J = 12.5, 2.5 Hz, H-6), 3.39 (3H, s, SO₂Me), 2.88-2.84 (1H, m, H-5), 2.08 (3H, s), 2.07 (3H, s), 1.94 (3H, s), 1.91 (3H, s, 4 x OAc). ¹³C NMR (125 MHz, MeOD): δ 172.4, 171.6, 171.2, 171.1 (4 x OAc), 155.4, 154.9 (C-4, C=N), 137.2 (C-7a), 128.3, 128.0 (C-6, C-2), 120.3 (C-3), 113.0 (C-3a), 107.1, 106.0 (C-7, C-5), 82.7 (C-1), 76.8 (C-5), 75.1 (C-3), 71.0 (C-2), 69.1 (C-4), 62.5 (C-6), 56.5 (OMe), 41.6 (SO₂Me), 20.8, 20.6, 20.6 (4 x OAc). HR-ESI-MS *m*/*z* [M-H]*: calc. for C₂₅H₂₉N₂O₁₆S₃: 709.0684, found 709.0694 (100%), 187.03 (32%), 212.06 (28%), 172.01 (16%), 265.01 (12%), 667.06 (4%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm): 218, 255, 290. FTIR (KBr, cm⁻¹) ν_{max} : 1753, 1372, 1231, 1107, 780.

1-MeSO₂-glucorapassicin (9)

K₂CO₃ (11 mg, 0.08 mmol) was added to a solution of compound **8** (30 mg, 0.04 mmol) in MeOH (1.0 mL) at rt. The mixture was stirred at rt for 30 min and filtered. The filtrate was concentrated and the crude residue was separated by FCC (MeOH-CH₂Cl₂ 1:4) to give **9** (20 mg, 0.034, 85%) as a white solid, mp 114 – 115 °C. HPLC: $t_R = 9.3$ min (method B). ¹H NMR (500 MHz, MeOD): δ 7.73 (1H, s, H-2), 7.51 (1H, d, J = 8.0 Hz, H-7), 7.36 (1H, t, J = 8.0 Hz, H-6), 6.85 (1H, d, J = 8.0 Hz, H-5), 4.22 (1H, d, J = 9.5 Hz, H-1), 3.90 (3H, s, OMe), 3.46-3.40 (2H, m, H-6), 3.35 (3H, s, SO₂Me), 3.26-3.19 (2H, m, H-2′, H-4′), 2.98 (1H, t, J = 9.0, H-3′), 2.32-2.29 (1H, m, H-5′). ¹³C NMR (125 MHz, MeOD): δ 157.3 (C=N), 155.5 (C-4), 137.0 (C-7a), 128.3 (C-2), 127.9 (C-6), 120.3 (C-3), 113.3 (C-3a), 106.9 (C-7), 105.8 (C-5), 85.5 (C-1′), 82.0 (C-5′), 79.7 (C-3′), 73.6 (C-2′), 70.9 (C-4′), 62.2 (C-6′), 56.4 (OMe), 41.4 (SO₂Me). HR-ESI-MS *m*/*z* [M-K]⁺: calc. for C₁₇H₂₁N₂O₁₂S₃: 541.0262, found 541.0258 (61%), 212.08 (100%), 205.16 (27%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 220, 250, 290. FTIR (KBr, cm⁻¹) ν_{max} : 3415, 1588, 1498, 1365, 1270, 1108, 780.

Compound X (14)

 K_2CO_3 (34 mg, 0.25 mmol) was added to a solution of **9** (60 mg, 0.082 mmol) in MeOH (3.0 mL). The mixture was stirred at rt for 15 h and filtered. The filtrate was concentrated and separated by FCC (MeOH-CH₂Cl₂,1:9) to give **14** (20 mg, 0.055, 67 % yield) as a yellow solid, mp 168 – 169 °C. HPLC: $t_R = 15.7$ min (method B). ¹H NMR (500 MHz, MeOD): δ 7.03 (1H, t, J = 8.0 Hz, H-6), 6.93

(1H, d, J = 8.0 Hz, H-7), 6.81 (1H, s, H-2), 6.47 (1H, d, J = 8.0 Hz, H-5), 5.25 (1H, d, J = 9.5 Hz, H-1), 3.93 (1H, t, J = 9.5 Hz, H-2), 3.90-3.82 (2H, m, H-6′, H-3), 3.85 (3H, s, OMe), 3.73 (1H, dd, J = 12.0, 5.5 Hz, H-6′), 3.59-3.55 (1H, m, H-5′), 3.51 (1H, dd, J = 9.5, 8.0 Hz, H-4′). ¹³C NMR (125 MHz, MeOD): δ 164.0 (C-11), 155.4 (C-4), 138.7 (C-7a), 125.9 (C-3), 124.2 (C-6), 113.9 (C-2), 113.6 (C-3a), 106.1 (C-7), 100.7 (C-5), 88.0 (C-2′), 85.1 (C-5′), 84.3 (C-1′), 75.5 (C-3′), 72.3 (C-4′), 62.6 (C-6′), 55.8 (OMe). HR-EI-MS m/z [M]⁺: calc. for C₁₆H₁₈N₂O₆S: 366.0886, found 366.0877 (10%), 188.06 (100%), 173.04 (53%), 204.03 (45%), 162.08 (39%), 73.03 (38%), 147.06 (34%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 226, 260, 290. FTIR (KBr, cm⁻¹) v_{max} : 3392, 2888, 1662, 1509, 1266, 735.

Methylated compound X (15)

A solution of compound **14** (16 mg, 0.044 mmol) in DMF (1.0 mL) was added to a suspension of NaH (11 mg, 0.26 mmol) in DMF (0.5 mL) at 0 °C. After stirring at rt for 15 min, CH₃I (20 μ L, 0.26 mmol) was added and the mixture was stirred for an additional 15 min. The mixture was diluted with H₂O and extracted with EtOAc. The organic extract was dried over Na₂SO₄, concentrated and fractionated by FCC (EtOAc-hexane, 1:2) to give **15** (16 mg, 0.038 mmol, 86%) as a yellow solid, mp 125 – 126 °C.

HPLC: $t_{\rm R} = 20.0$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 7.12 (1H, t, J = 8.0 Hz, H-6), 6.87 (1H, d, J = 8.0 Hz, H-7), 6.68 (1H, s, H-2), 6.49 (1H, d, J = 8.0 Hz, H-5), 5.03 (1H, d, J = 9.5 Hz, H-1), 3.99 (1H, t, J = 9.5 Hz, H-2), 3.91 (3H, s, OMe), 3.72 (3H, s, NMe), 3.69 (3H, s, OMe), 3.67-3.60 (4H, m, H-6 ,6 ,3 ,5), 3.58 (3H, s, OMe), 3.41 (3H, s, OCH₃), 3.33 (1H, t, J = 9.0 Hz, H-4). ¹³C NMR (125 MHz, CDCl₃): δ 158.9 (C-11), 154.5 (C-4), 150.3 (C-3a), 137.7 (C-7a), 124.3 (C-3), 123.2 (C-6), 116.6 (C-2), 102.7 (C-7), 99.8 (C-5), 85.9 (C-2), 84.3 (C-3), 83.6 (C-1), 81.6 (C-5), 79.2 (C-4), 71.5 (C-6), 61.5 (OMe), 60.1 (OMe), 59.6 (OMe), 55.8 (OCH₃), 33.3 (N-Me). HR-EI-MS m/z [M]⁺: calc. for C₂₀H₂₆N₂O₆S: 422.1512, found 422.1500 (53%), 218.05 (100%), 202.07 (53%), 187.05 (17%), 252.01 (12%), 456.11 (6%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 228, 302. FTIR (KBr, cm⁻¹) v_{max} :2941, 2274, 1666, 1501, 1466, 1262, 1115, 728.

1-MeSO₂-rapalexin A (11)

A solution of rapalexin A¹ (**4**) (20 mg, 0.10 mmol) in THF (1 mL) was added to a suspension of NaH (20 mg, 0.50 mmol) in THF (1 mL) at 0 °C. After stirring at rt for 15 min, ClSO₂Me (15 μ L, 0.20 mmol) was added and the mixture was stirred for an additional 15 min. The reaction mixture was diluted with H₂O, extracted with CH₂Cl₂, the organic extract was dried over Na₂SO₄, concentrated and separated by FCC (EtOAc-hexane, 1:20) to yield **11** (21 mg, 0.074 mmol, 74% yield) as a white solid, mp 145 – 146 °C. HPLC: $t_{\rm R} = 28.4$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 7.47 (1H, d, J = 8.5 Hz, H-7), 7.35 (1H, t, J = 8.5 Hz, H-6), 7.26 (1H, s, H-2), 6.77 (1H, d, J = 8.0 Hz, H-5), 4.00 (3H, s, OMe), 3.11 (3H, s, SO₂Me). ¹³C NMR (125 MHz, CDCl₃): δ 154.2 (C-4), 135.2 (C-7a), 127.9 (C-6), 118.8 (C-2), 116.3 (C-3), 113.8 (C-3a), 106.0, 104.8 (C-7, C-5), 55.6 (OMe), 41.1 (SO₂Me₃, HR-EI-MS m/z [M]⁺: calc. for C₁₁H₁₀N₂O₃S₂: 282.0133, found 282.0130 (41%), 203.03 (100%), 160.00 (12%), 116.04 (8%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 252, 284. FTIR (KBr, cm⁻¹) v_{max} : 3130, 2115, 1598, 1497, 1361, 1278, 1178, 1106, 969, 776.

1-MeSO₂-4-methoxyindole-3-carbonitrile (12)

¹ M. S. C. Pedras, Q.-A. Zheng and R. S. Gadagi, *Chem. Commun.*, 2007, 368–370.

Iodine (12 mg, 0.047 mmol) was added to a mixture of compound **5a** (10 mg, 0.040 mmol) in THF (50 μ L) and NH₄OH (0.50 mL) at rt.² The mixture was stirred at rt for 14 h, diluted with saturated aq. Na₂S₂O₃ and extracted with DCM. The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (CHCl₃) to give **12** (5.0 mg, 0.020 mmol, 50%) as a white solid, mp 167 – 168 °C. HPLC: $t_{\rm R} = 16.9$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 7.89 (1H, s, H-2), 7.49 (1H, dd, J = 8.5, 0.5 Hz, H-7), 7.42 (1H, t, J = 8.0 Hz, H-6), 6.82 (1H, d, J = 8.0 Hz, H-5), 4.01 (3H, s, OMe), 3.25 (3H, s, SO₂Me). ¹³C NMR (125 MHz, CDCl₃): δ 154.0 (C-4), 135.3 (C-7a), 132.6 (C-2), 128.3 (C-6), 118.1 (C-3), 114.3 (C-3a), 105.8, 105.2 (C-7, C-5), 92.2 (CN), 56.1 (OMe), 41.9 (SO₂Me). HR-FD-MS m/z [M]⁺: calc. for C₁₁H₁₀N₂O₃S: 250.0412, found: 250.0420 (100%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 227, 272, 296. FTIR (KBr, cm⁻¹) v_{max} : 3132, 2230, 1608, 1498, 1370, 1271, 1183, 1113, 973, 782, 569.

2.2 Synthesis of 1-t-Boc-glucorapassicin A (10)

Scheme 2S Synthesis of 1-*t*-Boc-glucorapassicin A (10).

² S. Talukdar, J.-L. Hsu, T.-C. Chou and J.-M. Fang, *Tetrahedron Lett.*, 2001, 42, 1103–1105.

(*t*-Boc)₂O (450 mg, 2.06 mmol) was added to a solution of 4-methoxyindole-3-carboxaldehyde (300 mg, 1.71 mmol) in THF (6.0 mL) at rt, followed by a catalytic amount of DMAP (4 mg, 0.033 mmol). After stirring at rt for 30 min, the mixture was acidified with HCl (1M ca. 2 drops), diluted with H₂O and extracted with DCM. The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (EtOAc-hexane, 1:2) to yield **5b** (434 mg, 1.58 mmol, 92%) as a white solid, mp 162 – 163 °C. HPLC: $t_R = 27.8$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 10.54 (1H, s, CHO), 8.22 (1H, s, H-2), 7.84 (1H, d, J = 8.5 Hz, H-7), 7.31 (1H, t, J = 8.5 Hz, H-6), 6.80 (1H, d, J = 8.0 Hz, H-5), 3.99 (3H, s, OMe), 1.67 (9H, s, *t*-Boc). ¹³C NMR (125 MHz, CDCl₃): δ 189.3 (CHO), 154.3 (C-4), 149.2 (*t*-Boc), 137.3 (C-7a), 128.9 (C-6), 126.3 (C-2), 121.5 (C-3), 117.4 (C-3a), 108.8 (C-7), 104.7 (C-5), 85.6 (*t*-Boc), 55.7 (OMe), 28.2 (*t*-Boc). HR-FD-MS *m/z* [M]⁺: calc. for C₁₅H₁₇NO₄: 275.1158, found: 275.1149 (100%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 220, 247, 322. FTIR (KBr, cm⁻¹) ν_{max} : 1737, 1676, 1545, 1433, 1282, 1146, 837.

1-*t*-Boc-2',3',4',6'-tetra-*O*-acetyl-β-D-glucopyranosylindole-3-thiohydroximate (7a)

A solution of NH₂OH.HCl (48 mg, 0.70 mmol) and Na₂CO₃ (37 mg, 0.35 mmol) in H₂O (1.0 mL) was added to a solution of **5b** (95 mg, 0.35 mmol) in EtOH (5.0 mL) at 60 °C. The mixture was stirred at 60 °C for 1 h, concentrated, diluted with H₂O and extracted with EtOAc. The organic extract was dried over Na₂SO₄ and concentrated to give oxime **16** (105 mg), which was used for the next step without further purification. NCS (47 mg, 0.35 mmol) was added in portions to a solution of oxime **16**

in pyridine (0.30 mL) and CH₂Cl₂ (3.0 mL) at 0 °C. After stirring at rt for 30 min, a solution of thio-β-D-glucose tetraacetate (121 mg, 0.33 mmol) and Et₃N (145 µL, 1.05 mmol) in CH₂Cl₂ (1.0 mL) was added and stirring was continued for 3 h. The reaction mixture was concentrated, diluted with toluene and then concentrated to dryness. The crude was separated by FCC (EtOAc-hexane, 1:1) to yield **7a** (200 mg, 0.31 mmol, 88%) as a yellow solid, mp 102 – 103 °C. HPLC: $t_R = 23.0$ min (method A). ¹H NMR (500 MHz, CDCl₃): δ 7.79 (1H, d, J = 8.5 Hz, H-7), 7.62 (1H, s, H-2), 7.30 (1H, t, J = 8.5 Hz, H-6), 6.71 (1H, d, J = 8.0 Hz, H-5), 5.06-4.87 (2H, m, H-2,4), 4.90 (1H, t, J = 9.5 Hz, H-3), 4.50 (1H, d, J = 10.5 Hz, H-1), 3.90 (1H, dd, J = 12.5, 3.0 Hz, H-6), 3.87 (3H, s, OMe), 3.48 (1H, dd, J = 12.5, 2.0 Hz, H-6), 2.63-2.61 (1H, m, H-5), 2.04 (6H, s), 1.94 (3H, s), 1.89 (3H, s, 4 x OAc), 1.67 (9H, s, *t*-Boc). ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 170.5, 169.3 (4 x OAc), 153.4 (C-4), 149.4, 149.2 (C=N and *t*-Boc), 136.3 (C-7a), 126.7, 126.2 (C-6, C-2), 118.5 (C-3), 111.3 (C-3a), 108.5 (C-7), 104.4 (C-5), 85.2 (*t*-Boc), 20.9, 20.8, 20.7, 20.6 (4 x OAc). HR-ESI-MS *m/z* [M+H]⁺: calc. for C₂₉H₃₇N₂O₁₃S: 653.2011, found: 653.2000 (100%), 691.16 (64%), 331.1048 (9%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 223, 256, 296. FTIR (KBr, cm⁻¹) ν_{max} : 1751, 1434, 1372, 1227, 1154, 1044, 961, 744.

1-t-Boc-2',3',4',6'-tetra-O-acetylglucorapassicin (8a)

Sulfur trioxide pyridine complex (183 mg, 1.15 mmol) was added to a solution of **7a** (150 mg, 0.23 mmol) in dry DCM (4.0 mL). The mixture was stirred at 40 °C for 18 h, was concentrated, diluted with H₂O and extracted with MeOH-CHCl₃ (1:4). The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (MeOH-DCM, 1:9) to yield **8a** (140 mg, 0.19 mmol, 83%) as a white solid, mp 111 – 112 °C. HPLC: $t_{\rm R} = 18.2$ min (method B). ¹H NMR (500 MHz, CDCl₃): δ 7.81 (1H, d, J = 8.0 Hz, H-7), 7.78 (1H, s, H-2), 7.35 (1H, t, J = 8.0 Hz, H-6), 6.85 (1H, d, J = 8.0 Hz, H-5), 4.95-4.89 (3H, m, H-2´,3´,4´), 4.65-4.61 (1H, m, H-1´), 3.91 (3H, s, OMe), 3.86 (1H, dd, J = 12.5,

3.0 Hz, H-6), 3.49 (1H, dd, J = 12.5, 2.5 Hz, H-6), 2.70-2.67 (1H, m, H-5), 2.07 (3H, s), 2.03 (3H, s), 1.92 (3H, s), 1.88 (3H, s, 4 x OAc), 1.69 (9H, s, *t*-Boc). ¹³C NMR (125 MHz, CDCl₃): δ 172.2, 171.6, 171.1, 171.1 (4 x OAc), 156.0, 154.9 (C=N, C-4), 150.6 (*t*-Boc), 137.6 (C-7a), 127.9, 127.8 (C-6, C-2), 119.8 (C-3), 112.0 (C-3a), 109.4 (C-7), 105.6 (C-5), 86.3 (*t*-Boc), 82.6 (C-1), 76.6 (C-5), 75.2 (C-3), 71.0 (C-2), 69.1 (C-4), 62.1 (C-6), 56.3 (OMe), 28.4 (*t*-Boc), 20.8, 20.7, 20.6, 20.5 (4 x OAc). HR-ESI-MS m/z [M-H]⁺: calc. for C₂₉H₃₅N₂O₁₆S₂: 731.1434, found: 731.1405 (100%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 224, 256, 297. FTIR (KBr, cm⁻¹) v_{max} : 1750, 1372, 1227, 1059, 851, 780.

1-t-Boc-glucorapassicin (10)

K₂CO₃ (26 mg, 0.19 mmol) was added to a solution of **8a** (70 mg, 0.095 mmol) in MeOH (2.0 mL) at rt. After stirring for 30 min, the mixture was filtered, the solvent was removed and the crude residue was separated by FCC (MeOH-DCM, 1:4) to yield **10** (40 mg, 0.066 mmol, 70%) as a white solid, mp 125 – 126 °C. HPLC: $t_{\rm R}$ = 10.9 min (method B). ¹H NMR (500 MHz, CDCl₃): δ 7.77 (1H, d, J = 8.5 Hz, H-7), 7.77 (1H, s, H-2), 7.29 (1H, t, J = 8.5, H-6), 6.79 (1H, d, J = 8.0 Hz, H-5), 4.22 (1H, d, J = 10.0 Hz, H-1), 3.89 (3H, s, OCH3), 3.44-3.36 (2H, m, H-6), 3.27-3.21 (2H, m, H-2', H-4), 2.97 (1H, t, J = 9.0 Hz, H-3), 2.21-2.20 (1H, m, H-5), 1.68 (9H, s, *t*-Boc). ¹³C NMR (125 MHz, CDCl₃): δ 158.1 (C=N), 155.0 (C-4), 150.7 (*t*-Boc), 137.6(C-7a), 128.0 (C-2), 127.5 (C-6), 120.0 (C-3), 112.5 (C-3a), 109.2 (C-7), 105.5 (C-5), 85.9, 85.3 (C-1' and *t*-Boc) , 81.9 (C-5), 79.7 (C-3), 73.6 (C-2), 70.6 (C-4), 61.9 (C-6), 56.3 (OMe), 28.4 (*t*-Boc). HR-ESI-MS m/z [M-K]⁺: calc. for C₂₁H₂₇N₂O₁₂S₂: 563.1010, found: 563.1011 (100%). UV (HPLC, CH₃CN – H₂O) λ_{max} (nm) 225, 258, 299. FTIR (KBr, cm⁻¹) ν_{max} : 3385, 2974, 1742, 1435, 1372, 1276, 1153, 1063, 848, 780.

Transformation of 1-MeSO₂-glucorapassicin (9) in TFA/DCM

1-MeSO₂-glucorapassicin (9) (5 mg, 0.009 mmol) was dissolved in a mixture of TFA-DCM (1:4, 200 μ L), stirred for 10 min at rt, and the solvent was removed. The mixture was dissolved in CHCl₃, filtered, and concentrated to yield a mixture of 1-MeSO₂-rapalexin (**11**) and 1-MeSO₂-4-methoxyindole-3-carbonitrile (**12**) (2 mg, 4:1, determined by ¹H NMR and HPLC).

Transformation of 1-t-Boc-glucorapassicin (10) in TFA/DCM

1-*t*-Boc-glucorapassicin (**10**) (5 mg, 0.009 mmol) was dissolved in a mixture of TFA-DCM (1:4, 200 μ L), stirred for 10 min at rt, and the solvent was removed. The mixture was dissolved in CHCl₃, filtered, and concentrated to give a mixture of rapalexin (**4**) and 4-methoxyindole-3-carbonitrile (**13**) (2 mg, 2:1, determined by ¹H NMR and HPLC), identical in all respects to authentic samples.³

³ M.S.C. Pedras and E.E. Yaya, Org. Biomol. Chem. 2012, 10, 3613-3616.

One-pot synthesis of rapalexin A (4)

N-chlorosuccinimide (NCS) (26 mg, 0.19 mmol) was added in portions to a solution of oxime **10** (55 mg, 0.19 mmol) and pyridine (150 μ L) in DCM (1.5 mL) at 0 °C. After stirring at rt for 30 min, triisopropylsilanethiol (50 μ L, 0.23 mmol) was added, followed by Et₃N (80 μ L, 0.57 mmol). After stirring the reaction mixture for an additional 30 min, the mixture was diluted with toluene and concentrated to dryness. The residue was dissolved in TFA/DCM (30%, 1.5 mL) and the mixture was stirred for 1 h at r. The solvent was removed, and the residue was dissolved in DCM (2 mL) and Et₃N (80 μ L). After 1 h, the reaction mixture was concentrated and separated by FCC to afford rapalexin A (**4**) (12 mg, 0.059 mmol, 31%) and 4-methoxyindole-3-carboxylic acid (**21**) (10 mg, 0.052 mmol, 27%), identical in all respects to an authentic sample.⁴

⁴ M. S. C. Pedras and S. Hossain, *Phytochemistry*, 2011, **72**, 2308–2316.

3. NMR spectra of new compounds

1-MeSO₂-4-methoxyindole-3-carboxaldehyde (5a)

1-MeSO₂-2',3',4',6'-tetra-*O*-acetyl-β-D-glucopyranosylindole-3-thiohydroximate (7)

1-MeSO₂-2',3',4',6'-tetra-*O*-acetylglucorapassicin (8)

1-MeSO₂-glucorapassicin (9)

Compound X (14)

Methylated compound X (15)

1-MeSO₂-rapalexin A (11)

1-MeSO₂-4-methoxyindole-3-carbonitrile (12)

1-t-Boc-4-methoxy-indole-3-carboxaldehyde (5b)

1-*t*-Boc-2',3',4',6'-tetra-*O*-acetyl-β-D-glucopyranosylindole-3-thiohydroximate (7a)

1-t-Boc-2',3',4',6'-tetra-O-acetylglucorapassicin (8a)

1-t-Boc-glucorapassicin (10)

10.473

		<u></u>									
	10	9	8	7	6	5	4	3	2	1	ppm
0.93			0.95	66.0			3.00	3.08			

	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppr
--	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	----	----	----	----	-----------	----	----	----	-----

- 41.79

Compound 5a CDCl ₃		154.61		128.47 126.98 122.13 117.46	105.99	77.48 77.23 76.97	
---	--	--------	--	--------------------------------------	--------	-------------------------	--

Compound 7	00000000000000000000000000000000000000	419 999	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0000 0000 0000	218	7773 767 754 754 748
expand	00444444	マ マ マ マ	•••• • • • • •	•••• • • • •	• M	· · · · · · · · · · · · · · · · · · ·
		\/	\leq /	$\searrow \lor$		

Compound 9 CD₃OD

Compound 15 expansion	 	 	3. 528 3. 528 3. 647 3. 692 3. 647 3. 647 3. 647 3. 584 3. 584 3. 549	-3.423	→ 3.362 3.352 3.335 3.335 3.317 3.293
			$\sum \sum \left($	1	

	[
	-
	-
	٠
	$^{\circ}$
	1

3.987

Compound 11 CDCl ₃	- 156.31 - 154.20		- 118.80 - 116.39 - 113.78	- 106.02 - 104.75 - 77.48	76.97	25.60	
				\/	V 		
MeO NCS							
SO ₂ Me							
a s ginner fam Bille Mana fersk kan den gener fan de skarte sjier skine skine skine skrifter in sen fersk brev 1990 den gester en gener ferde ferske pinger ferde ynderskine ferske parte parte sjiber sjine en ferenseste sjou 1990 den gester	ally di user ya 1 di user i bey anatar di ku la pla da di anataka 1965 ya sa Mga ng 1995 ya sa kasar tanan ya 1990 ng tang ang ang ang ang da pang ang Mga ng 1995 ya sa kasar tanan ya 1990 ng tang ang ang ang ang ang ang ang ang ang	47-2820/244/249/249/24274 4822/249/249/249/249/24/24/24/24/24/24/24/24/24/24/24/24/24/	yazwilawa zahan zhen zhen e kukan ar Ayyoreesa waaley piyorelleren ja ar	યત મુદ્દે કે તે કે બાદ અને તે અને છે. કે		, la ili pol, de cala sallen con als nijente con calendari polegi a pol	h kara man karya karan da karan karan karan karan da karan karan karan karan karan karan karan karan karan kar Karan karan karan sang parat Karan ng kalpa karang salan parat manan parat sapar sapar karan karang karang pat Karan karan karan sang parat Karan ng kalpa karang salan parat manan parat sapar sapar karan karang karang kara
210 200 190 180	170 160 150	140 130	120 11	0 100 90 80	70 60	50 4	10 30 20 ppm

Compound 5b CDCl ₃	189.27	 		 	77.48	ى 55. 60	28.24
MeO CHO							
t-BOC							
			,]				
an the state of the	a hujen a nationa na a tradina ha na secondaria da secondaria da secondaria da secondaria da secondaria da seco					-	nates fra manimum and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-

20

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30

r ∿

٠

Compound 10 CD₃OD

Compound **9** HMQC expand

Compound 9 COSY expand

Compound 15 HMQC expand

Compound **15** HMBC

Compound **15** HMBC expansion

