Crosslinking of the Pd(acacCN)_2 building unit with Ag(I) salts: dynamic 1D polymers and an extended 3D network †

Qianqian Guo,^a Carina Merkens,^a Runze Si,^b and Ulli Englert^{*a}

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Supplementary Information

^a Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany. Fax: +49-241-8092288; Tel: +49-241-8094666; E-mail: ullrich.englert@ac.rwth-aachen.de

^b Carleton College, 300 North College Street, Northfield, MN, USA. Tel: +1-612-8021080; Email: sir@carleton.edu.

List of Figures

S 1	Displacement ellipsoid plot of the asymmetric unit in 1	3
S2	Displacement ellipsoid plot of the asymmetric unit in 2α	3
S 3	Displacement ellipsoid plot of 1D chain in 2β	4
S4	Displacement ellipsoid plot of the asymmetric unit in 3α	4
S5	Displacement ellipsoid plot of 1D chain in 3β	5
S 6	Displacement ellipsoid plot of the asymmetric unit in 5	5
S 7	Displacement ellipsoid plot of the asymmetric unit in 6	6
S 8	Displacement ellipsoid plot of the asymmetric unit in 7	6
S9	Simulated and experimental powder patterns for wet and dry samples of 2	7
S10	Simulated and experimental powder patterns for wet and dry samples of 3	7
S11	Simulated and experimental powder patterns for wet and dry samples of 5	8
S12	Simulated and experimental powder patterns of 7	8
S13	Ratio <i>I</i> (f/t) as a function of temperature for the sum of all reflection intensities in 2	9
S14	Ratio <i>I</i> (f/t) as a function of temperature for the sum of all reflection intensities in 3	9
S15	Intensity of individual reflections hkl , $h+k = 2n+1$ in 2 as a function of temperature	0
S16	Intensity of individual reflections hkl , $h+k = 2n+1$ in 3 as a function of temperature	0
S17	Intensity of individual reflections hkl , $h+k = 2n+1$ in 4 as a function of temperature. $\dots \dots \dots$	1
S18	¹⁹ F NMR spectrum of compound 4 in D_2O_2	2

Fig. S1 Displacement ellipsoid plot of the asymmetric unit in 1. Ellipsoids are drawn at 75 % probability and hydrogen atoms are omitted for clarity.

Fig. S2 Displacement ellipsoid plot of the asymmetric unit in 2α . Ellipsoids are drawn at 75 % probability and hydrogen atoms are omitted for clarity.

Fig. S3 Displacement ellipsoid plot of 1D chain in 2β . Ellipsoids are drawn at 50 % probability and hydrogen atoms are omitted for clarity. Symmetry operators: i = 2-x, y, 0.5-z; ii = 1-x, y, 1.5-z.

Fig. S4 Displacement ellipsoid plot of the asymmetric unit in 3α . Ellipsoids are drawn at 75 % probability and hydrogen atoms are omitted for clarity.

Fig. S5 Displacement ellipsoid plot of the 1D chain in 3β . Ellipsoids are drawn at 50 % probability and hydrogen atoms are omitted for clarity. Symmetry operators: i = 2-x, y, 0.5-z; ii = 1-x, y, 1.5-z.

Fig. S6 Displacement ellipsoid plot of the asymmetric unit in 5. Ellipsoids are drawn at 75 % probability and hydrogen atoms are omitted for clarity.

Fig. S7 Displacement ellipsoid plot of the asymmetric unit in 6. Ellipsoids are drawn at 75 % probability and hydrogen atoms are omitted for clarity.

Fig. S8 Displacement ellipsoid plot of the asymmetric unit in 7. Ellipsoids are drawn at 75 % probability and hydrogen atoms are omitted for clarity.

Fig. S9 Simulated and experimental powder patterns for wet and dry samples of 2.

Fig. S10 Simulated and experimental powder patterns for wet and dry samples of 3.

Fig. S11 Simulated and experimental powder patterns for wet and dry samples of 5.

Fig. S12 Simulated and experimental powder patterns of 7.

Fig. S13 Ratio I(f/t) as a function of temperature for the sum of all reflection intensities in 2. In this preliminary experiment, the phase transition temperature was determined approximately.

Fig. S14 Ratio I(f/t) as a function of temperature for the sum of all reflection intensities in 3. In this preliminary experiment, the phase transition temperature was determined approximately.

Fig. S15 Intensity of individual reflections hkl, h+k = 2n+1 in 2 as a function of temperature.

Fig. S16 Intensity of individual reflections hkl, h+k = 2n+1 in 3 as a function of temperature.

Fig. S17 Intensity of individual reflections hkl, h+k = 2n+1 in **4** as a function of temperature.

Fig. S18 19 F NMR spectrum of compound 4 in D₂O.