Electronic Supplementary Information (ESI)

Synthesis and structural study of a new group of trigermanates, $CaRE_2Ge_3O_{10}$ (*RE* = La-Yb)

Olga A. Lipina,^a Ludmila L. Surat,^a Alexander P. Tyutyunnik,^a Ivan I. Leonidov,^{*a,b} Emma G. Vovkotrub^c and Vladimir G. Zubkov^a

^a Institute of Solid State Chemistry, UB RAS, 620990 Ekaterinburg, Russia

^b Ural Federal University, 620002 Ekaterinburg, Russia

^c Institute of High-Temperature Electrochemistry, UB RAS, 620990 Ekaterinburg, Russia

Corresponding author: ivanleonidov@ihim.uran.ru

Fig. S10 Rietveld refinement of $CaTm_2Ge_3O_{10}$ from the powder XRD data.

Table S1 Atomic coordinates and thermal parameters (Å²) for $CaRE_2Ge_3O_{10}$ (RE = La-Tb)

Atom		La	Pr	Nd	Eu	Gd	Tb
$C_{2}(1)/RF(1)$	r/a	0.9296(6)	0.0397(5)	0.0358(4)	0.0305(6)	0.0306(5)	0.0280(6)
	$\frac{x}{u}$	0.9290(0) 0.0516(5)	0.0397(3) 0.8987(4)	0.0000(4) 0.8992(4)	0.0505(0)	0.0500(5) 0.9042(4)	0.0200(0) 0.9012(5)
	7/C	0.0310(3) 0.5771(2)	0.0907(4) 0.4110(2)	0.0992(4) 0.4115(2)	0.9014(3) 0.4141(2)	0.9042(4) 0.4156(2)	0.9012(3) 0.4151(2)
	LL/LL *100	39(2)	3.0(3)	2 5(1)	2 6(1)	2 9(1)	32(1)
$C_{2}(2)/RE(2)$	r/a	0.6384(2)	0.5814(5)	0.5838(5)	0.5823(6)	0.5814(5)	0.5790(6)
$\operatorname{Cu}(2)/\operatorname{ILL}(2)$	x/u x/b	0.0304(2) 0.1758(2)	0.2312(4)	0.3030(3) 0.2341(4)	0.3323(0)	0.3373(4)	0.3750(0) 0.2357(5)
	y/0 7/c	0.1750(2) 0.90843(8)	0.2312(4) 0.4131(2)	0.2341(4) 0.4137(2)	0.2384(3) 0.4139(2)	0.2373(4) 0.4150(2)	0.2337(3) 0.4139(2)
	1L/II *100	2.89(6)	22(3)	23(1)	3 A(2)	26(1)	3 A(1)
$C_{2}(3)/RE(3)$	v_{1}/v_{e} 100	0.8416(2)	0.1417(5)	0.1376(4)	0.1316(4)	0.1301(4)	0.1288(4)
Ca(3)/RE(3)	x/u 11/b	0.0762(2)	0.1417(5) 0.1331(5)	0.1370(4) 0.1315(4)	0.1310(4) 0.1328(4)	0.1301(4) 0.1300(4)	0.1200(4) 0.1200(4)
	y/0 7/0	0.2702(2) 0.73052(7)	0.1331(3) 0.2513(2)	0.1313(4) 0.2521(2)	0.1526(4) 0.2536(2)	0.1309(4) 0.2525(2)	0.1299(4) 0.2529(2)
	2/C II/II *100	0.73932(7)	21(2)	2.0(1)	2.2330(2)	2.2323(2)	2.08(0)
$G_{2}(1)$	$U_i/U_e \cdot 100$	5.02(0) 0.1738(4)	2.1(3)	2.0(1) 0.1010(7)	2.3(1)	2.80(8)	2.96(9)
Ge(1)	x/a	0.1/38(4)	0.0977(8)	0.1010(7)	0.0999(7)	0.0973(0)	0.0997(7)
	<i>y/D</i>	0.0030(3)	0.3078(7)	0.3081(0)	0.3728(7)	0.3702(0)	0.3097(7)
	Z/C	0.921/(1)	0.42/4(3)	0.4204(3)	0.4234(3)	0.4202(3)	0.423/(3)
$C_{-}(2)$	U_i/U_e^*100	2.89(9)	5.0(5)	2.8(1)	2.7(2)	3.1(1) 0.4400(7)	3.U(1) 0.4470(9)
Ge(2)	x/a	0.4128(4)	0.4403(8)	0.4420(7)	0.44/3(8)	0.4499(7)	0.44/0(8)
	<i>y/b</i>	0.1/8/(4)	0.2268(6)	0.2253(5)	0.2293(7)	0.2290(6)	0.2294(7)
	Z/C	0.5/31(1)	0.0732(3)	0.0722(3)	0.0726(3)	0.0729(3)	0.0/22(3)
0 (2)	$U_{i}/U_{e}^{*}100$	3.22(9)	2.3(3)	2.1(1)	3.3(2)	2.7(1)	3.7(2)
Ge(3)	x/a	0.2970(3)	0.6603(7)	0.6589(6)	0.6569(7)	0.6582(6)	0.653/(7)
	<i>y/b</i>	0.2751(3)	0.1264(7)	0.1253(6)	0.1201(7)	0.1223(6)	0.1206(7)
	Z/C	0.7160(1)	0.2352(3)	0.2354(2)	0.2411(3)	0.2413(2)	0.2408(3)
	$U_{i}/U_{e}^{*}100$	2.92(7)	1.9(3)	2.3(1)	2.8(1)	2.8(1)	3.4(1)
O(1)	x/a	0.870(2)	0.029(3)	0.022(3)	0.013(3)	0.010(3)	0.022(3)
	<i>y/b</i>	0.136(1)	0.067(3)	0.067(3)	0.074(3)	0.085(2)	0.083(3)
	z/c	0.0335(6)	0.125(1)	0.123(1)	0.133(1)	0.124(1)	0.131(1)
O(2)	x/a	0.968(2)	0.066(3)	0.059(3)	0.063(3)	0.066(3)	0.070(3)
	y/b	0.227(1)	0.708(3)	0.709(3)	0.717(3)	0.719(3)	0.710(3)
	z/c	0.8890(5)	0.045(1)	0.045(1)	0.048(1)	0.043(1)	0.048(1)
O(3)	x/a	0.140(2)	0.150(3)	0.154(3)	0.159(3)	0.145(3)	0.157(3)
	y/b	0.445(1)	0.457(3)	0.463(3)	0.464(3)	0.450(2)	0.452(3)
	z/c	0.7319(6)	0.222(1)	0.223(1)	0.228(1)	0.217(1)	0.226(1)
O(4)	x/a	0.537(1)	0.194(3)	0.188(3)	0.192(3)	0.184(3)	0.175(3)
	y/b	0.250(2)	0.800(3)	0.813(2)	0.826(3)	0.817(2)	0.818(3)
	z/c	0.7787(5)	0.288(1)	0.279(1)	0.265(1)	0.2722(9)	0.266(1)
O(5)	x/a	0.300(2)	0.233(3)	0.217(3)	0.220(3)	0.216(3)	0.225(3)
	y/b	0.032(2)	0.213(3)	0.207(3)	0.209(3)	0.205(2)	0.193(3)
	z/c	0.8603(6)	0.384(1)	0.382(1)	0.380(1)	0.378(1)	0.381(1)
O(6)	x/a	0.380(2)	0.304(3)	0.302(2)	0.299(3)	0.312(2)	0.303(3)
	y/b	0.307(1)	0.062(3)	0.054(3)	0.061(3)	0.047(2)	0.051(3)
	z/c	0.4912(5)	0.001(1)	0.001(1)	0.006(1)	0.004(1)	0.005(1)
O(7)	x/a	0.235(2)	0.300(3)	0.297(3)	0.285(3)	0.302(2)	0.296(3)
. /	y/b	0.999(1)	0.408(3)	0.418(3)	0.433(3)	0.422(2)	0.431(3)
	z/c	0.5459(6)	0.090(1)	0.086(1)	0.079(1)	0.0841(9)	0.084(1)
O(8)	x/a	0.132(2)	0.485(3)	0.495(3)	0.486(4)	0.485(3)	0.479(3)
. /	v/b	0.081(1)	0.175(3)	0.184(2)	0.178(3)	0.166(2)	0.165(3)
	z/c	0.6970(6)	0.280(1)	0.279(1)	0.278(1)	0.287(1)	0.280(1)
O(9)	x/a	0.667(1)	0.502(3)	0.520(3)	0.534(3)	0.527(3)	0.531(3)
- (*)	v/b	0.663(2)	0.063(3)	0.067(3)	0.063(3)	0.054(2)	0.054(3)
	z/c	0.3695(6)	0.141(1)	0.144(1)	0.144(1)	0.150(1)	0.149(1)
O(10)	$\frac{1}{x/a}$	0.663(2)	0.616(3)	0.626(3)	0.639(3)	0.626(3)	0.636(3)
0(10)	v/h	0.003(2)	0.307(3)	0.325(2)	0.327(3)	0.313(3)	0.312(3)
	y/0 7/c	0.101(2) 0.6173(6)	0.307(3)	0.323(2)	0.527(5)	0.313(3)	0.312(3)
	∠/C II./II *1∩∩a	2 8(1)	10(3)	22(2)	1 8(2)	1 8(2)	1.7(2)
	$0_{1}/0_{e}$ 100 ⁻¹	2.0(1)	1.7(3)	2.2(2)	1.0(2)	1.0(2)	1.7(2)
^a The thermal v	vibration narame	eters of oxygen at	oms have been a	constrained as a	single variable		

Table S2 Atomic coordinates and thern	al parameters (Å ²) for	$CaRE_2Ge_3O_{10}$ (RE =	Y, Dy–Yb)
---------------------------------------	-------------------------------------	--------------------------	-----------

Atom		Dy	Y	Но	Er	Tm	Yb
		2					
Ca(1)/RE(1)	x/a	0.0267(5)	0.0249(3)	0.0259(3)	0.02453(20)	0.0238(2)	0.0229(2)
	y/b	0.9008(4)	0.9009(3)	0.9003(2)	0.90048(18)	0.8997(2)	0.8988(2)
	z/c	0.4152(2)	0.4149(1)	0.4151(1)	0.41485(7)	0.41479(9)	0.41475(7)
	$U_{i}/U_{e}*100$	2.9(1)	2.2(1)	2.58(6)	2.485(45)	2.58(6)	2.48(5)
Ca(2)/RE(2)	x/a	0.5801(5)	0.5821(3)	0.5815(3)	0.58133(21)	0.5813(3)	0.5797(2)
	y/b	0.2353(4)	0.2343(3)	0.2349(2)	0.23391(19)	0.2323(2)	0.2295(2)
	z/c	0.4140(2)	0.4148(1)	0.4148(1)	0.41467(8)	0.4144(1)	0.41421(8)
	$U_{i}/U_{e}^{*}100$	2.8(1)	2.0(1)	2.30(6)	2.215(49)	2.20(7)	2.30(6)
Ca(3)/RE(3)	x/a	0.1280(3)	0.1292(2)	0.1291(2)	0.12881(14)	0.1283(2)	0.1281(1)
	y/b	0.1296(4)	0.1290(2)	0.1290(2)	0.12831(13)	0.1274(2)	0.1258(1)
	z/c	0.2532(2)	0.25331(9)	0.25332(8)	0.25352(6)	0.25337(7)	0.25340(6)
a (1)	U_{i}/U_{e}^{*100}	2.37(8)	1.79(9)	2.02(4)	2.023(28)	1.99(4)	1.99(3)
Ge(1)	x/a	0.0980(6)	0.0971(3)	0.0975(3)	0.09699(26)	0.0961(3)	0.0958(3)
	у/b	0.3715(6)	0.3718(3)	0.3716(3)	0.37084(24)	0.3710(3)	0.3697(3)
		0.4241(3)	0.4243(1)	0.4243(1)	0.42393(10)	0.4234(1)	0.4231(1)
	$U_{i}/U_{e}^{*}100$	2.6(1)	2.39(9)	2.15(5)	2.29(5)	2.28(6)	2.22(5)
Ge(2)	x/a	0.4479(7)	0.4520(3)	0.4523(3)	0.45326(26)	0.4539(3)	0.4542(3)
	у/b	0.2287(6)	0.2279(3)	0.2266(3)	0.22628(23)	0.2262(3)	0.2251(3)
	Z/C	0.0/19(2)	0.0720(1)	0.0/22(1)	0.07203(10)	0.0/18(1)	0.0/16(1)
$C_{-}(2)$	$U_{i}/U_{e}^{*}100$	2.6(1)	2.2(1)	1.95(5)	2.08(5)	2.00(6)	2.06(5)
Ge(3)	x/a	0.0343(0) 0.1174(6)	0.0500(3) 0.1170(2)	0.0301(3) 0.1175(2)	0.03043(23) 0.11641(25)	0.0550(3) 0.1140(2)	0.0000(3)
	<i>y/D</i>	0.11/4(0) 0.2412(2)	0.1170(3)	0.11/3(3)	0.11041(23) 0.24122(0)	0.1149(3)	0.1132(3)
	Z/C	0.2412(2) 2 5(1)	1.05(0)	0.2413(1) 1 70(5)	0.24155(9) 1.02(4)	0.2408(1)	0.2406(1)
0(1)	$U_i/U_e \cdot 100$	2.3(1)	1.93(9)	1.70(3)	1.92(4)	1.90(0)	1.60(3)
0(1)	x/u x/b	0.017(3)	0.010(1) 0.075(1)	0.010(1)	0.0148(12) 0.0768(11)	0.014(2) 0.076(1)	0.017(1)
	y/0 7/c	0.070(2) 0.130(1)	0.075(1) 0.1289(5)	0.079(1) 0.1269(5)	0.0708(11) 0.1275(5)	0.070(1) 0.1280(6)	0.077(1) 0.1293(5)
O(2)	2/C x/a	0.130(1) 0.072(3)	0.1287(3)	0.1200(3)	0.1275(3)	0.1280(0)	0.1295(3)
0(2)	x/u v/h	0.072(3) 0.711(2)	0.000(1)	0.005(1) 0.715(1)	0.0055(12) 0.7162(11)	0.000(2) 0.717(1)	0.000(1) 0.714(1)
	z/c	0.0505(9)	0.0459(4)	0.0488(5)	0.0467(5)	0.0485(6)	0.0470(5)
0(3)	$\frac{2}{x/a}$	0.160(3)	0.147(1)	0.148(1)	0.1462(12)	0.147(2)	0.147(1)
0(0)	v/b	0.448(2)	0.450(1)	0.449(1)	0.4494(10)	0.446(1)	0.445(1)
	$\frac{z}{c}$	0.227(1)	0.2171(4)	0.2199(5)	0.2176(4)	0.2188(6)	0.2195(5)
O(4)	x/a	0.180(2)	0.184(1)	0.1864(12)	0.1876(11)	0.187(2)	0.188(1)
	v/b	0.812(2)	0.813(1)	0.815(1)	0.8109(11)	0.808(1)	0.808(1)
	z/c	0.2642(9)	0.2677(4)	0.2663(5)	0.2660(4)	0.2665(6)	0.2665(5)
O(5)	x/a	0.218(3)	0.217(1)	0.220(1)	0.2177(13)	0.215(2)	0.216(1)
	y/b	0.198(2)	0.202(1)	0.201(1)	0.2001(11)	0.197(1)	0.195(1)
	z/c	0.380(1)	0.3795(5)	0.3815(5)	0.3807(5)	0.3787(6)	0.3787(5)
O(6)	x/a	0.307(2)	0.308(1)	0.309(1)	0.3088(11)	0.309(2)	0.304(1)
	y/b	0.055(2)	0.053(1)	0.055(1)	0.0570(11)	0.058(1)	0.057(1)
	z/c	0.004(1)	0.0059(5)	0.0056(6)	0.0056(5)	0.0045(6)	0.0039(5)
O(7)	x/a	0.299(2)	0.308(1)	0.303(1)	0.3040(11)	0.303(1)	0.302(1)
	y/b	0.425(2)	0.419(1)	0.420(1)	0.4175(11)	0.416(1)	0.411(1)
	z/c	0.0838(8)	0.0876(4)	0.0864(4)	0.0862(4)	0.0870(5)	0.0870(4)
O(8)	x/a	0.480(3)	0.473(1)	0.478(1)	0.4772(12)	0.478(2)	0.474(1)
	y/b	0.158(2)	0.168(1)	0.165(1)	0.1651(10)	0.162(1)	0.161(1)
a /	z/c	0.282(1)	0.2843(5)	0.2848(5)	0.2843(4)	0.2845(6)	0.2841(5)
O(9)	x/a	0.532(3)	0.525(1)	0.529(1)	0.5272(12)	0.529(2)	0.529(1)
	y/b	0.059(2)	0.048(1)	0.052(1)	0.0484(11)	0.048(1)	0.045(1)
0(10)	z/c	0.147(1)	0.1458(5)	0.1476(6)	0.1460(5)	0.1451(6)	0.1452(5)
O(10)	x/a	0.632(2)	0.636(1)	0.638(1)	0.6371(11)	0.634(2)	0.636(1)
	<i>y/b</i>	0.31/(3)	0.320(1)	0.324(1)	0.3236(11)	0.322(1)	0.322(1)
	Z/C	0.036(1)	0.038/(5)	0.0380(5)	0.0387(5)	0.03/5(6)	0.0389(5)
	$U_i/U_e^*100^a$	1.8(2)	1.7(1)	1.03(8)		1.8(1)	1./3(8)

^a The thermal vibration parameters of oxygen atoms have been constrained as a single variable.

Table S3 The $Ca^{2+}-RE^{3+}$ fractions in three metal cation sites in the structures of $CaRE_2Ge_3O_{10}$ (RE = La-Tb)

Atom	La	Pr	Nd	Eu	Gd	Tb
Ca(1)	0.928(0)	0.227(2)	0.276(4)	0.395(5)	0.404(4)	0.390(5)
RE(1)	0.072(0)	0.773(2)	0.724(4)	0.605(5)	0.596(4)	0.610(5)
Ca(2)	0.073(3)	0.427(3)	0.424(1)	0.418(5)	0.473(3)	0.453(4)
RE(2)	0.927(3)	0.573(3)	0.576(1)	0.582(5)	0.527(3)	0.547(4)
~ ~						
Ca(3)	0.000(3)	0.346(5)	0.300(5)	0.187(1)	0.123(1)	0.157(1)
RE(3)	1.000(3)	0.654(5)	0.700(5)	0.813(1)	0.877(1)	0.843(1)

Table S4 The Ca²⁺– RE^{3+} fractions in three metal cation sites in the structures of Ca RE_2 Ge₃O₁₀ (RE = Y, Dy–Yb)

Atom	Dy	Y	Ya	Но	Er	Tm	Yb
Ca(1)	0.399(4)	0.447(4)	0.450(3)	0.415(3)	0.421(2)	0.418(2)	0.416(2)
RE(1)	0.601(4)	0.553(4)	0.550(3)	0.585(3)	0.579(2)	0.582(2)	0.584(2)
Ca(2)	0.476(3)	0 464(4)	0 462(4)	0.481(2)	0 499(2)	0.518(2)	0.524(2)
RE(2)	0.524(3)	0.536(4)	0.538(3)	0.519(2)	0.501(2)	0.482(2)	0.476(2)
$C_{\alpha}(2)$	0.125(1)	0.080(1)	0.089(4)	0.104(1)	0.080(2)	0.064(2)	0.060(1)
	0.125(1)	0.089(1)	0.088(4)	0.104(1)	0.080(2)	0.064(2)	0.060(1)
KE(3)	0.8/5(1)	0.911(1)	0.912(3)	0.896(1)	0.920(2)	0.936(2)	0.940(1)

References

1 H. Yamane, R. Tanimura, T. Yamada, J. Takahashi, T. Kajiwara and M. Shimada, J. Solid State Chem., 2006, 179, 289–295.