<Electronic Supplementary Information>

New topological 3D copper(II) coordination networks: catechol oxidation catalysis and solvent adsorption via porous properties

Doeon Kim, Byung Joo Kim, Tae Hwan Noh and Ok-Sang Jung*

Department of Chemistry, Pusan National University, Pusan 609-735, Korea

Refinements of structures with the SQUEEZE routine in PLATON.

For the present copper(II) complexes, the simple solvate molecules of both complexes and the anions in case of $[Cu_3L_4(CH_3CN)_6](BF_4)_6 \cdot 16H_2O \cdot 5CH_3CN$ in the voids were highly disordered and were impossible to refine using conventional discrete-atom models. Therefore, the residual electron density was treated as diffuse contributions using the SQUEEZE of the PLATON software and located a series of voids (see below).¹

For [Cu₃L₄(CH₃CN)₆](ClO₄)₆·19H₂O·6CH₃CN,

_platon_squeeze_void_nr

_platon_squeeze_void_average_x

_platon_squeeze_void_average_y

_platon_squeeze_void_average_z

_platon_squeeze_void_volume

_platon_squeeze_void_count_electrons

_platon_squeeze_void_content

- 1 0.304 0.376 0.054 2675 860''
- 2 0.804 0.876 0.054 2675 860''
- 3 0.500 0.890 0.250 76 32''
- 4 1.000 0.390 0.250 76 32''
- 5 0.500 0.110 0.750 76 32''

6 1.000 0.610 0.750 76 32'' _platon_squeeze_details ;

For [Cu₃L₄(CH₃CN)₆](BF₄)₆·16H₂O·5CH₃CN,

_platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 0.003 -0.004 -0.015 6993 2368 '' _platon_squeeze_details ;

References for X-ray Crystallography:

1 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

Fig. S1 Crystal structure of L: ORTEP drawing with anisotropic displacement parameters at 30% probability (a) and partial packing diagram showing highlighted intermolecular $\pi \cdots \pi$ interactions (b).

Fig. S2 X-ray crystal structure of $[Cu_3L_4(CH_3CN)_6](ClO_4)_6 \cdot 19H_2O \cdot 6CH_3CN$ (top) and $[Cu_3L_4(CH_3CN)_6](BF_4)_6 \cdot 16H_2O \cdot 5CH_3CN$ (bottom) with anisotropic displacement parameters at 30% and 20% probabilities, respectively. The hydrogen atoms and counteranions were omitted for clarity.

Fig. S3 Schematic representation showing linkage of the subunits connected through Cu(1) to form 1D linked cages running perpendicular to the *bc*-plane (a) and linked through Cu(2) in the crystallographic *bc*-direction (b).

Fig. S4 Left: plot showing catalytic yields of 3,5-DBuCat (triangles), 4-BuCat (circles), and 4-ClCat (squares) using $[Cu_3L_4(CH_3CN)_6](ClO_4)_6 \cdot 19H_2O \cdot 6CH_3CN$ (red lines), mixture of $Cu(ClO_4)_2$ and L in 3 : 4 ratio (blue line), and only $Cu(ClO_4)_2$ (green line) as catalysts. The [catalyst] : [catechol] ratio is 1 : 1 in CHCl₃ at 40 °C. Right: UV/vis spectra showing oxidation of 3,5-DBuCat (a), 4-BuCat (b), and 4-ClCat (c) using $[Cu_3L_4(CH_3CN)_6](ClO_4)_6 \cdot 19H_2O \cdot 6CH_3CN$ as a catalyst. The [catalyst] : [catechol] ratio is 1 : 1.

Fig. S5 UV/vis spectra showing the oxidation of 4-BuCat (a) and 3-ClCat (b) using $[Cu_3L_4(CH_3CN)_6](BF_4)_6\cdot 16H_2O\cdot 5CH_3CN$ as acatalyst. The [catalyst] : [catechol] ratio is 1 : 1 in CHCl₃ at 40 °C.

Fig. S6 Plot showing catalytic yields of 3,5-DBuCat (red), 4-BuCat (blue), and 4-ClCat (black) using $[Cu_3L_4(CH_3CN)_6](ClO_4)_6 \cdot 19H_2O \cdot 6CH_3CN$ (solid lines) and $[Cu_3L_4(CH_3CN)_6](BF_4)_6 \cdot 16H_2O \cdot 5CH_3CN$ (dashed lines) as catalysts. The [catalyst] : [catechol] ratio is 2 : 1 in CHCl₃ at 40 °C.

Fig. S7 UV/vis spectra showing oxidation of 3,5-DBuCat using $CuCl_2$ (red) and CuO (blue) as catalysts in CHCl₃ at 40 °C. The catalytic yields are 12% and 3% for 24 h, respectively.

Fig. S8 IR spectra of $[Cu_3L_4(CH_3CN)_6](ClO_4)_6 \cdot 19H_2O \cdot 6CH_3CN$ before (top) and after (bottom) catechol oxidation catalysis of 3,5-DBuCat.

Fig. S9 TGA (red lines) and DSC (blue lines) curves of

 $[Cu_3L_4(CH_3CN)_6](ClO_4)_6 \cdot 19H_2O \cdot 6CH_3CN \text{ (top) and } [Cu_3L_4(CH_3CN)_6](BF_4)_6 \cdot 16H_2O \cdot 5CH_3CN \text{ (bottom). Inset: IR spectra (Nujol mull) of as-synthesized samples (a) and acetonitrile-desolvated samples (b). The circle, rhombus, and dagger denote the vibrational frequencies corresponding to <math>\tilde{v}_{OH}$ of water, $\tilde{v}_{C\equiv N}$ of acetonitrile, and the *sp*³ hydrocarbon of Nujol, respectively.

Fig. S10 ¹H NMR (Me₂SO-*d*₆) spectra for the acetonitrile-desolvated $[Cu_3L_4](ClO_4)_6 \cdot 19H_2O$ (a), and reincorporated samples $[Cu_3L_4](ClO_4)_6 \cdot 19H_2O \cdot 12CHCl_3$ (b), $[Cu_3L_4](ClO_4)_6 \cdot 19H_2O \cdot 13THF$ (c), and $[Cu_3L_4](ClO_4)_6 \cdot 19H_2O \cdot 7Me_2CO$ (d). The circle, squares, and dagger denote the resonances of CHCl₃, THF, and acetone, respectively.

Fig. S11 ¹H NMR (Me₂SO-*d*₆) spectra for the acetonitrile-desolvated $[Cu_3L_4](BF_4)_6 \cdot 16H_2O$ (a), and reincorporated samples $[Cu_3L_4](BF_4)_6 \cdot 16H_2O \cdot 7CHCl_3$ (b), $[Cu_3L_4](BF_4)_6 \cdot 16H_2O \cdot 8THF$ (c), and $[Cu_3L_4](BF_4)_6 \cdot 16H_2O \cdot 4Me_2CO$ (d). The circle, squares, and dagger denote the resonances of CHCl₃, THF, and acetone, respectively.

Fig. S12 ¹H NMR (Me₂SO-*d*₆) spectra representing the solvent-adsorption ratio of $[Cu_3L_4](ClO_4)_6 \cdot 19H_2O$ (a) and $[Cu_3L_4](BF_4)_6 \cdot 16H_2O$ (b) by immersing in a mixture of CHCl₃, THF, and acetone (v/v/v = 1:1:1). The circles, squares, and daggers denote the resonances of CHCl₃, THF, and acetone, respectively.