Mixed-metal-organic frameworks (M'MOFs) from 1D to 3D based on the "organic" connectivity with the inorganic connectivity: Syntheses, structures and magnetic properties

Sheng Zhang,^a Xiangyu Liu,^{a,b} Qi Yang,^a Qing Wei,^a Gang Xie,^a Sanping Chen^{*a}

^aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China ^bSchool of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

Corresponding author Dr. Sanping Chen E-mail: <u>sanpingchen@126.com</u>

Compound	1	2	3	4	5
Empirical formula	$C_{12}H_{24}Ca_2CoN_6O_{24}$	$C_{12}H_{24}\ Sr_2CoN_4O_{18}Cl_2$	$C_{12}H_{24}Ba_2CoN_4O_{18}Cl_2 \\$	$C_{12}H_{24}Ca_2NiN_6O_{24}$	$C_{12}H_{24}Sr_2NiN_4O_{18}Cl_2 \\$
Formula weight	775.46	817.42	916.86	775.24	817.20
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a (Å)	6.6762(9)	6.5863(9)	6.6953(4)	6.6503(9)	6.6133(15)
b (Å)	7.9864(11)	7.6421(11)	7.6428(5)	7.9533(11)	7.6512(17)
c (Å)	13.7450(19)	13.809(2)	14.0935(8)	13.656(2)	13.778(3)
α (°)	78.535(2)	96.335(2)	96.5830(10)	78.411(2)	96.312(4)
β (°)	84.941(2)	94.647(2)	95.1290(10)	84.660(2)	95.186(3)
γ (°)	76.907(2)	97.679(2)	96.1710(10)	77.080(2)	97.792(4)
V (Å ³)	698.86(17)	681.37(17)	708.48(7)	688.77(17)	682.6(3)
Ζ	1	1	1	1	1
F000	397.0	405.0	441.0	398.0	406.0
Goodness-of-fit on F^2	1.000	1.082	1.004	1.003	1.008
R indices (all data)	$R_1 = 0.0787$ $wR_2 = 0.1378$	$R_1 = 0.0585$ $wR_2 = 0.0911$	$R_1 = 0.0197$ $wR_2 = 0.0472$	$R_1 = 0.0429$ $wR_2 = 0.1015$	$R_1 = 0.0473$ $wR_2 = 0.0882$
Final R indices [I>2sigma(I)]	$R_1 = 0.0563$ $wR_2 = 0.1378$	$R_1 = 0.0439$ $wR_2 = 0.0852$	$R_1 = 0.0190$ $wR_2 = 0.0468$	$R_1 = 0.0373$ $wR_2 = 0.0971$	$R_1 = 0.0365$ $wR_2 = 0.0820$

Table S1 Crystal data and structure refinement details for 1-10.

6	7	8	9	10
$C_{12}H_{24}NiBa_2N_4O_{18}Cl_2$	$C_{12}H_{20}Ca_{2}CuN_{6}O_{22} \\$	$C_{12}H_{24}Cl_{2}Sr_{2}CuN_{4}O_{18}$	$C_{12}H_{24}Sr_{2}CuN_{6}O_{24}$	C12H10Ba2CuN4 O11Cl
916.64	744.04	822.03	875.15	759.91
Triclinic	Triclinic	Triclinic	Monoclinic	Monoclinic
<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P2_1/n$	<i>C</i> 2/c
6.6818(9)	7.7073(7)	6.5961(5)	14.3621(13)	18.685(8)
7.6135(10)	8.5422(8)	7.7866(6)	6.9800(6)	11.722(5)
14.034(2)	10.0834(9)	13.4353(11)	15.7788(15)	9.244(4)
96.685(2)	94.5500(10)	83.4050(10)	90.00	90
95.671(2)	105.3350(10)	80.9610(10)	114.1210(10)	91.771(6)
95.868(2)	95.4270(10)	81.5450(10)	90.00	90
700.93(17)	633.58(10)	671.10(9)	1443.7(2)	2023.8(14)
1	1	1	2	4
442.0	379.0	407.0	870.0	1424.0
1.057	1.019	1.075	1.011	1.437
$R_1 = 0.0353$ $wR_2 = 0.0642$	$R_1 = 0.0401$ $wR_2 = 0.0895$	$R_1 = 0.0341$ $wR_2 = 0.0701$	$R_1 = 0.0408$ $wR_2 = 0.0819$	RI = 0.0693 wR2 = 0.2256
$R_1 = 0.0318$ $wR_2 = 0.0621$	$R_1 = 0.0356$ $wR_2 = 0.0863$	$R_1 = 0.0287$ $wR_2 = 0.0727$	$R_1 = 0.0299$ $wR_2 = 0.0761$	R1 = 0.0676 wR2 = 0.2223

 ${}^{\mathbf{a}}R = \Sigma \mathbf{I}|F_0| - |F_C|\mathbf{I}/\Sigma|F_0|, wR_2 = [\Sigma[w(F_0^2 - F_C^2)^2]/\Sigma[(F_0^2)^2]]^{1/2}$

Compound 1			
Co(1)-O(1)	2.066(4)	O(18)-Ca(1)-O(5)#2	161.08(15)
Co(1)-O(1)#1	2.066(4)	O(18)-Ca(1)-O(13)	90.17(16)
Co(1)-N(1)#1	2.103(4)	O(5)#2-Ca(1)-O(13)	97.07(16)
Co(1)-N(1)	2.103(4)	O(18)-Ca(1)-O(11)	92.40(16)
Co(1)-O(7)	2.113(4)	O(5)#2-Ca(1)-O(11)	87.02(15)
Co(1)-O(7)#1	2.113(4)	O(13)-Ca(1)-O(11)	159.16(17)
Ca(1)-O(18)	2.361(4)	O(18)-Ca(1)-O(5)	128.98(15)
Ca(1)-O(5)#2	2.364(4)	O(5)#2-Ca(1)-O(5)	69.42(14)
Ca(1)-O(13)	2.379(4)	O(13)-Ca(1)-O(5)	83.75(14)
Ca(1)-O(11)	2.466(5)	O(11)-Ca(1)-O(5)	78.57(16)
Ca(1)-O(5)	2.479(4)	O(18)-Ca(1)-O(20)	78.67(14)
Ca(1)-O(20)	2.484(4)	O(5)#2-Ca(1)-O(20)	82.96(13)
Ca(1)-O(10)	2.511(4)	O(13)-Ca(1)-O(20)	126.10(14)
Ca(1)-O(6)	2.600(4)	O(11)-Ca(1)-O(20)	74.62(15)
O(5)-Ca(1)#2	2.364(4)	O(5)-Ca(1)-O(20)	142.22(14)
O(1)-Co(1)-O(1)#1	180	O(18)-Ca(1)-O(10)	80.98(16)
O(1)-Co(1)-N(1)#1	100.85(15)	O(5)#2-Ca(1)-O(10)	83.96(14)
O(1)#1-Co(1)-N(1)#1	79.15(15)	O(13)-Ca(1)-O(10)	75.45(14)
O(1)-Co(1)-N(1)	79.15(15)	O(11)-Ca(1)-O(10)	125.37(16)
O(1)#1-Co(1)-N(1)	100.85(15)	O(5)-Ca(1)-O(10)	143.82(14)
N(1)#1-Co(1)-N(1)	180	O(20)-Ca(1)-O(10)	50.83(13)
O(1)-Co(1)-O(7)	90.76(15)	O(18)-Ca(1)-O(6)	77.63(14)
O(1)#1-Co(1)-O(7)	89.24(15)	O(5)#2-Ca(1)-O(6)	120.81(12)
N(1)#1-Co(1)-O(7)	89.11(16)	O(13)-Ca(1)-O(6)	79.60(14)
N(1)-Co(1)-O(7)	90.89(16)	O(11)-Ca(1)-O(6)	80.76(15)
O(1)-Co(1)-O(7)#1	89.24(15)	O(5)-Ca(1)-O(6)	51.41(11)
O(1)#1-Co(1)-O(7)#1	90.76(15)	O(20)-Ca(1)-O(6)	144.80(14)
N(1)#1-Co(1)-O(7)#1	90.89(16)	O(10)-Ca(1)-O(6)	146.88(14)
N(1)-Co(1)-O(7)#1	89.11(16)	Ca(2)#2-O(1)-Ca(1)	110.58(14)
O(7)-Co(1)-O(7)#1	180		

Table S2 Selected bond lengths/Å and bond angles/° in 1-10.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x+1,-y,-z+1

Compound 2			
Sr(1)-O(4)#1	2.590(4)	O(2)-Sr(1)-O(3)#2	137.99(12)
Sr(1)-O(6)	2.596(4)	O(7)-Sr(1)-O(3)#2	141.85(12)
Sr(1)-O(2)	2.601(3)	O(8)-Sr(1)-O(3)#2	95.09(11)
Sr(1)-O(7)	2.611(4)	O(9)-Sr(1)-O(3)#2	74.93(11)
Sr(1)-O(8)	2.637(3)	O(4)#1-Sr(1)-O(4)#2	63.66(13)
Sr(1)-O(9)	2.645(3)	O(6)-Sr(1)-O(4)#2	122.84(13)
Sr(1)-O(3)#2	2.726(4)	O(2)-Sr(1)-O(4)#2	138.15(12)
Sr(1)-O(4)#2	2.749(4)	O(7)-Sr(1)-O(4)#2	137.96(13)
Sr(1)-O(8)#2	2.824(4)	O(8)-Sr(1)-O(4)#2	68.44(11)
Co(1)-O(1)#3	2.075(3)	O(9)-Sr(1)-O(4)#2	79.07(11)
Co(1)-O(1)	2.075(3)	O(3)#2-Sr(1)-O(4)#2	47.41(11)
Co(1)-O(5)#3	2.089(4)	O(4)#1-Sr(1)-O(8)#2	141.28(11)

Co(1)-O(5)	2.089(4)	O(6)-Sr(1)-O(8)#2	67.79(12)
Co(1)-N(1)#3	2.120(4)	O(2)-Sr(1)-O(8)#2	77.31(11)
Co(1)-N(1)	2.120(4)	O(7)-Sr(1)-O(8)#2	134.94(13)
O(3)-Sr(1)#2	2.726(4)	O(8)-Sr(1)-O(8)#2	68.09(13)
O(4)-Sr(1)#4	2.590(4)	O(9)-Sr(1)-O(8)#2	129.71(11)
O(4)-Sr(1)#2	2.749(4)	O(3)#2-Sr(1)-O(8)#2	60.75(11)
O(8)-Sr(1)#2	2.824(4)	O(4)#2-Sr(1)-O(8)#2	87.02(11)
O(4)#1-Sr(1)-O(6)	149.13(12)	O(1)#3-Co(1)-O(1)	180
O(4)#1-Sr(1)-O(2)	107.19(12)	O(1)#3-Co(1)-O(5)#3	88.34(15)
O(6)-Sr(1)-O(2)	86.73(13)	O(1)-Co(1)-O(5)#3	91.66(15)
O(4)#1-Sr(1)-O(7)	78.76(14)	O(1)#3-Co(1)-O(5)	91.66(15)
O(6)-Sr(1)-O(7)	81.03(16)	O(1)-Co(1)-O(5)	88.34(15)
O(2)-Sr(1)-O(7)	68.95(12)	O(5)#3-Co(1)-O(5)	180
O(4)#1-Sr(1)-O(8)	77.43(12)	O(1)#3-Co(1)-N(1)#3	78.26(14)
O(6)-Sr(1)-O(8)	133.40(12)	O(1)-Co(1)-N(1)#3	101.74(14)
O(2)-Sr(1)-O(8)	69.71(11)	O(5)#3-Co(1)-N(1)#3	92.39(16)
O(7)-Sr(1)-O(8)	122.65(13)	O(5)-Co(1)-N(1)#3	87.61(16)
O(4)#1-Sr(1)-O(9)	71.60(12)	O(1)#3-Co(1)-N(1)	101.74(14)
O(6)-Sr(1)-O(9)	79.97(12)	O(1)-Co(1)-N(1)	78.26(14)
O(2)-Sr(1)-O(9)	139.65(11)	O(5)#3-Co(1)-N(1)	87.61(16)
O(7)-Sr(1)-O(9)	71.41(11)	O(5)-Co(1)-N(1)	92.39(16)
O(8)-Sr(1)-O(9)	142.53(12)	N(1)#3-Co(1)-N(1)	180
O(4)#1-Sr(1)-O(3)#2	107.10(12)	Sr(1)#4-O(4)-Sr(1)#2	116.34(13)
O(6)-Sr(1)-O(3)#2	75.89(13)	Sr(1)-O(8)-Sr(1)#2	111.91(13)

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 -x+1,-y+1,-z #3 -x+1,-y+1,-z+1 #4 x-1,y,z #5 -x+2,-y+1,-z

nd 3			
Ba(1)-O(1)#1	2.733(3)	O(5)-Ba(1)-O(8)	142.99(11)
Ba(1)-O(9)#2	2.746(3)	O(6)-Ba(1)-O(8)	94.28(9)
Ba(1)-O(4)	2.786(3)	O(7)-Ba(1)-O(8)	76.21(11)
Ba(1)-O(5)	2.788(4)	O(1)#1-Ba(1)-O(6)#1	80.74(9)
Ba(1)-O(6)	2.811(3)	O(9)#2-Ba(1)-O(6)#1	142.55(9)
Ba(1)-O(7)	2.855(4)	O(4)-Ba(1)-O(6)#1	132.79(9)
Ba(1)-O(8)	2.856(3)	O(5)-Ba(1)-O(6)#1	133.66(11)
Ba(1)-O(6)#1	2.895(3)	O(6)-Ba(1)-O(6)#1	71.56(10)
Ba(1)-O(9)	2.909(3)	O(7)-Ba(1)-O(6)#1	68.10(9)
Co(1)-O(2)#3	2.069(3)	O(8)-Ba(1)-O(6)#1	61.76(9)
Co(1)-O(2)	2.069(3)	O(1)#1-Ba(1)-O(9)	134.42(9)
Co(1)-O(3)#3	2.106(3)	O(9)#2-Ba(1)-O(9)	64.64(10)
Co(1)-O(3)	2.106(3)	O(4)-Ba(1)-O(9)	81.82(9)
Co(1)-N(1)#3	2.117(3)	O(5)-Ba(1)-O(9)	141.04(11)
Co(1)-N(1)	2.117(3)	O(6)-Ba(1)-O(9)	65.27(9)
O(1)-Ba(1)#1	2.733(3)	O(7)-Ba(1)-O(9)	120.61(11)
O(6)-Ba(1)#1	2.895(3)	O(8)-Ba(1)-O(9)	44.69(8)
O(9)-Ba(1)#2	2.746(3)	O(6)#1-Ba(1)-O(9)	85.25(8)
O(1)#1-Ba(1)-O(9)#2	104.07(10)	O(2)#3-Co(1)-O(2)	180
O(1)#1-Ba(1)-O(4)	137.05(9)	O(2)#3-Co(1)-O(3)#3	88.85(12)
O(9)#2-Ba(1)-O(4)	67.09(9)	O(2)-Co(1)-O(3)#3	91.15(12)

O(1)#1-Ba(1)-O(5)	67.19(11)	O(2)#3-Co(1)-O(3)	91.15(12)
O(9)#2-Ba(1)-O(5)	79.63(11)	O(2)-Co(1)-O(3)	88.85(12)
O(4)-Ba(1)-O(5)	69.86(11)	O(3)#3-Co(1)-O(3)	180
O(1)#1-Ba(1)-O(6)	69.15(9)	O(2)#3-Co(1)-N(1)#3	78.29(12)
O(9)#2-Ba(1)-O(6)	75.64(9)	O(2)-Co(1)-N(1)#3	101.71(12)
O(4)-Ba(1)-O(6)	138.25(9)	O(3)#3-Co(1)-N(1)#3	91.68(13)
O(5)-Ba(1)-O(6)	121.77(11)	O(3)-Co(1)-N(1)#3	88.32(13)
O(1)#1-Ba(1)-O(7)	93.67(11)	O(2)#3-Co(1)-N(1)	101.71(12)
O(9)#2-Ba(1)-O(7)	146.10(9)	O(2)-Co(1)-N(1)	78.29(12)
O(4)-Ba(1)-O(7)	80.18(9)	O(3)#3-Co(1)-N(1)	88.32(13)
O(5)-Ba(1)-O(7)	81.09(12)	O(3)-Co(1)-N(1)	91.68(13)
O(6)-Ba(1)-O(7)	138.19(9)	N(1)#3-Co(1)-N(1)	180
O(1)#1-Ba(1)-O(8)	142.35(9)	Ba(1)-O(6)-Ba(1)#1	108.44(10)
O(9)#2-Ba(1)-O(8)	103.96(9)	Ba(1)#2-O(9)-Ba(1)	115.36(10)
O(4)-Ba(1)-O(8)	77.68(9)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1 #2 -x,-y+2,-z+1 #3 -x+1,-y+2,-z+2

ompound 4			
Ni(1)-N(2)#1	2.040(2)	O(6)-Ca(1)-O(4)#2	161.16(8)
Ni(1)-N(2)	2.040(2)	O(6)-Ca(1)-O(7)	89.13(9)
Ni(1)-O(1)#1	2.052(2)	O(4)#2-Ca(1)-O(7)	97.85(8)
Ni(1)-O(1)	2.052(2)	O(6)-Ca(1)-O(5)	93.43(10)
Ni(1)-O(11)#1	2.101(2)	O(4)#2-Ca(1)-O(5)	86.34(9)
Ni(1)-O(11)	2.101(2)	O(7)-Ca(1)-O(5)	158.90(10)
Ca(1)-O(6)	2.357(2)	O(6)-Ca(1)-O(4)	128.93(8)
Ca(1)-O(4)#2	2.3602(19)	O(4)#2-Ca(1)-O(4)	69.44(7)
Ca(1)-O(7)	2.371(2)	O(7)-Ca(1)-O(4)	84.28(8)
Ca(1)-O(5)	2.448(3)	O(5)-Ca(1)-O(4)	77.83(10)
Ca(1)-O(4)	2.472(2)	O(6)-Ca(1)-O(8)	78.82(8)
Ca(1)-O(8)	2.476(2)	O(4)#2-Ca(1)-O(8)	82.96(7)
Ca(1)-O(10)	2.504(2)	O(7)-Ca(1)-O(8)	126.15(8)
Ca(1)-O(3)	2.592(2)	O(5)-Ca(1)-O(8)	74.81(10)
O(4)-Ca(1)#2	2.3602(19)	O(4)-Ca(1)-O(8)	142.04(7)
N(2)#1-Ni(1)-N(2)	180	O(6)-Ca(1)-O(10)	80.90(9)
N(2)#1-Ni(1)-O(1)#1	80.76(8)	O(4)#2-Ca(1)-O(10)	83.90(8)
N(2)-Ni(1)-O(1)#1	99.24(8)	O(7)-Ca(1)-O(10)	75.66(8)
N(2)#1-Ni(1)-O(1)	99.24(8)	O(5)-Ca(1)-O(10)	125.43(10)
N(2)-Ni(1)-O(1)	80.76(8)	O(4)-Ca(1)-O(10)	144.02(8)
O(1)#1-Ni(1)-O(1)	180	O(8)-Ca(1)-O(10)	50.75(7)
N(2)#1-Ni(1)-O(11)#1	90.98(9)	O(6)-Ca(1)-O(3)	77.76(8)
N(2)-Ni(1)-O(11)#1	89.02(9)	O(4)#2-Ca(1)-O(3)	120.63(7)
O(1)#1-Ni(1)-O(11)#1	91.48(8)	O(7)-Ca(1)-O(3)	79.64(8)
O(1)-Ni(1)-O(11)#1	88.52(8)	O(5)-Ca(1)-O(3)	80.45(9)
N(2)#1-Ni(1)-O(11)	89.02(9)	O(4)-Ca(1)-O(3)	51.22(6)
N(2)-Ni(1)-O(11)	90.98(9)	O(8)-Ca(1)-O(3)	144.57(8)
O(1)#1-Ni(1)-O(11)	88.52(8)	O(10)-Ca(1)-O(3)	147.40(7)
O(1)-Ni(1)-O(11)	91.48(8)	Ca(1)#2-O(4)-Ca(1)	110.56(7)
O(112)#1-Ni(1)-O(11)	180		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1 #2 -x,-y+2,-z

ound 5			
Sr(1)-O(4)#1	2.597(4)	O(7)-Sr(1)-O(3)#2	94.72(13)
Sr(1)-O(2)	2.608(3)	O(8)-Sr(1)-O(3)#2	75.70(13)
Sr(1)-O(7)	2.614(4)	O(6)-Sr(1)-O(3)#2	142.09(13)
Sr(1)-O(8)	2.619(5)	O(9)-Sr(1)-O(3)#2	74.78(12)
Sr(1)-O(6)	2.619(4)	O(4)#1-Sr(1)-O(4)#2	63.61(14)
Sr(1)-O(9)	2.658(4)	O(2)-Sr(1)-O(4)#2	138.15(12)
Sr(1)-O(3)#2	2.730(4)	O(7)-Sr(1)-O(4)#2	67.65(13)
Sr(1)-O(4)#2	2.769(4)	O(8)-Sr(1)-O(4)#2	122.94(13)
Sr(1)-O(7)#2	2.848(4)	O(6)-Sr(1)-O(4)#2	137.76(13)
Ni(1)-O(1)	2.055(3)	O(9)-Sr(1)-O(4)#2	79.14(12)
Ni(1)-O(1)#4	2.055(3)	O(3)#2-Sr(1)-O(4)#2	47.64(11)
Ni(1)-N(1)	2.059(4)	O(4)#1-Sr(1)-O(7)#2	141.50(12)
Ni(1)-N(1)#4	2.059(4)	O(2)-Sr(1)-O(7)#2	77.35(13)
Ni(1)-O(5)	2.086(4)	O(7)-Sr(1)-O(7)#2	67.87(15)
Ni(1)-O(5)#4	2.086(4)	O(8)-Sr(1)-O(7)#2	67.59(13)
O(1)-Sr(1)#2	2.730(4)	O(6)-Sr(1)-O(7)#2	135.05(13)
O(4)-Sr(1)#5	2.597(4)	O(9)-Sr(1)-O(7)#2	130.04(13)
O(4)-Sr(1)#2	2.769(4)	O(3)#2-Sr(1)-O(7)#2	61.13(12)
O(7)-Sr(1)#2	2.848(4)	O(4)#2-Sr(1)-O(7)#2	87.16(11)
O(4)#1-Sr(1)-O(2)	107.22(13)	O(1)-Ni(1)-O(1)#4	180
O(4)#1-Sr(1)-O(7)	77.62(13)	O(1)-Ni(1)-N(1)	80.09(14)
O(2)-Sr(1)-O(7)	70.49(13)	O(1)#4-Ni(1)-N(1)	99.91(14)
O(4)#1-Sr(1)-O(8)	149.11(13)	O(1)-Ni(1)-N(1)#4	99.91(14)
O(2)-Sr(1)-O(8)	86.67(14)	O(1)#4-Ni(1)-N(1)#4	80.09(14)
O(7)-Sr(1)-O(8)	133.26(13)	N(1)-Ni(1)-N(1)#4	180
O(4)#1-Sr(1)-O(6)	78.23(14)	O(1)-Ni(1)-O(5)	89.11(14)
O(2)-Sr(1)-O(6)	68.50(12)	O(1)#4-Ni(1)-O(5)	90.89(14)
O(7)-Sr(1)-O(6)	122.69(15)	N(1)-Ni(1)-O(5)	91.30(16)
O(8)-Sr(1)-O(6)	81.76(16)	N(1)#4-Ni(1)-O(5)	88.70(16)
O(4)#1-Sr(1)-O(9)	71.16(13)	O(1)-Ni(1)-O(5)#4	90.89(14)
O(2)-Sr(1)-O(9)	139.41(12)	O(1)#4-Ni(1)-O(5)#4	89.11(14)
O(7)-Sr(1)-O(9)	141.97(12)	N(1)-Ni(1)-O(5)#4	88.70(16)
O(8)-Sr(1)-O(9)	80.34(13)	N(1)#4-Ni(1)-O(5)#4	91.30(16)
O(6)-Sr(1)-O(9)	71.64(13)	O(5)-Ni(1)-O(5)#4	180
O(4)#1-Sr(1)-O(3)#2	107.01(11)	Sr(1)#5-O(4)-Sr(1)#2	116.39(14)
O(2)-Sr(1)-O(3)#2	138.40(12)	Sr(1)-O(7)-Sr(1)#2	112.13(15)

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z #2 -x,-y+2,-z+1 #3 -x-1,-y+2,-z+1 #4 -x,-y+2,-z #5 x+1,y,z

Compound 6					
Ba(1)-O(4)#1	2.732(4)	O(6)-Ba(1)-O(3)#2	77.35(11)		
Ba(1)-O(2)	2.738(3)	O(9)-Ba(1)-O(3)#2	142.50(12)		
Ba(1)-O(6)	2.781(3)	O(7)-Ba(1)-O(3)#2	94.16(10)		
Ba(1)-O(9)	2.792(4)	O(8)-Ba(1)-O(3)#2	75.54(12)		
Ba(1)-O(7)	2.816(3)	O(4)#1-Ba(1)-O(7)#2	142.65(10)		

Ba(1)-O(8)	2.852(4)	O(2)-Ba(1)-O(7)#2	81.04(11)
Ba(1)-O(3)#2	2.855(4)	O(6)-Ba(1)-O(7)#2	132.68(10)
Ba(1)-O(7)#2	2.886(4)	O(9)-Ba(1)-O(7)#2	133.46(13)
Ba(1)-O(4)#2	2.925(4)	O(7)-Ba(1)-O(7)#2	71.62(12)
Ba(1)-C(7)#2	3.242(5)	O(8)-Ba(1)-O(7)#2	68.32(11)
Ni(1)-O(1)	2.049(3)	O(3)#2-Ba(1)-O(7)#2	61.95(11)
Ni(1)-O(1)#3	2.049(3)	O(4)#1-Ba(1)-O(4)#2	64.44(12)
Ni(1)-N(1)#3	2.058(4)	O(2)-Ba(1)-O(4)#2	134.14(11)
Ni(1)-N(1)	2.058(4)	O(6)-Ba(1)-O(4)#2	81.79(11)
Ni(1)-O(5)#3	2.083(4)	O(9)-Ba(1)-O(4)#2	141.14(13)
Ni(1)-O(5)	2.083(4)	O(7)-Ba(1)-O(4)#2	64.80(10)
O(3)-Ba(1)#2	2.855(4)	O(8)-Ba(1)-O(4)#2	120.08(11)
O(4)-Ba(1)#4	2.732(4)	O(3)#2-Ba(1)-O(4)#2	44.85(10)
O(4)-Ba(1)#2	2.925(4)	O(7)#2-Ba(1)-O(4)#2	85.34(10)
O(7)-Ba(1)#2	2.886(4)	O(1)-Ni(1)-O(1)#3	180
O(4)#1-Ba(1)-O(2)	103.90(12)	O(1)-Ni(1)-N(1)#3	99.98(15)
O(4)#1-Ba(1)-O(6)	66.91(11)	O(1)#3-Ni(1)-N(1)#3	80.02(14)
O(2)-Ba(1)-O(6)	137.05(11)	O(1)-Ni(1)-N(1)	80.02(15)
O(4)#1-Ba(1)-O(9)	79.93(13)	O(1)#3-Ni(1)-N(1)	99.98(15)
O(2)-Ba(1)-O(9)	67.24(11)	N(1)#3-Ni(1)-N(1)	180
O(6)-Ba(1)-O(9)	69.83(11)	O(1)-Ni(1)-O(5)#3	89.09(14)
O(4)#1-Ba(1)-O(7)	75.67(11)	O(1)#3-Ni(1)-O(5)#3	90.91(14)
O(2)-Ba(1)-O(7)	69.34(11)	N(1)#3-Ni(1)-O(5)#3	89.19(15)
O(6)-Ba(1)-O(7)	137.97(11)	N(1)-Ni(1)-O(5)#3	90.81(15)
O(9)-Ba(1)-O(7)	122.36(13)	O(1)-Ni(1)-O(5)	90.91(14)
O(4)#1-Ba(1)-O(8)	145.39(12)	O(1)#3-Ni(1)-O(5)	89.09(14)
O(2)-Ba(1)-O(8)	94.88(13)	N(1)#3-Ni(1)-O(5)	90.81(15)
O(6)-Ba(1)-O(8)	79.48(11)	N(1)-Ni(1)-O(5)	89.19(15)
O(9)-Ba(1)-O(8)	81.00(15)	O(5)#3-Ni(1)-O(5)	180
O(7)-Ba(1)-O(8)	138.77(11)	Ba(1)#4-O(4)-Ba(1)#2	115.56(12)
O(4)#1-Ba(1)-O(3)#2	103.70(11)	Ba(1)-O(7)-Ba(1)#2	108.38(12)
O(2)-Ba(1)-O(3)#2	142.82(12)		

 $Symmetry \ transformations \ used \ to \ generate \ equivalent \ atoms: \\ \#1 \ x-1, y, z \ \ \#2 \ -x+1, -y+1, -z+1 \ \ \ \#3 \ -x+1, -y+1, -z \ \ \ \ \#4 \ x+1, y, z \ \ \ \#5 \ -x, -y+1, -z+1$

Compound 7					
Cu(1)-O(1)#1	1.9645(18)	O(3)#2-Ca(1)-O(11)	85.98(9)		
Cu(1)-O(1)	1.9645(18)	O(9)-Ca(1)-O(11)	156.00(9)		
Cu(1)-N(1)	1.990(2)	O(3)#2-Ca(1)-O(10)	164.78(7)		
Cu(1)-N(1)#1	1.990(2)	O(9)-Ca(1)-O(10)	95.46(8)		
Cu(1)-O(5)	2.538(2)	O(11)-Ca(1)-O(10)	95.93(9)		
Ca(1)-O(3)#2	2.3203(19)	O(3)#2-Ca(1)-O(8)	84.24(8)		
Ca(1)-O(9)	2.366(2)	O(9)-Ca(1)-O(8)	77.14(7)		
Ca(1)-O(11)	2.380(2)	O(11)-Ca(1)-O(8)	125.34(8)		
Ca(1)-O(10)	2.387(2)	O(10)-Ca(1)-O(8)	82.35(8)		
Ca(1)-O(8)	2.515(2)	O(3)#2-Ca(1)-O(4)	122.48(7)		
Ca(1)-O(4)	2.549(2)	O(9)-Ca(1)-O(4)	83.98(8)		
Ca(1)-O(6)	2.566(2)	O(11)-Ca(1)-O(4)	79.39(8)		

Ca(1)-O(3)	2.584(2)	O(10)-Ca(1)-O(4)	72.63(7)
Ca(1)-C(6)	2.903(3)	O(8)-Ca(1)-O(4)	146.94(8)
Ca(1)-N(3)	2.949(2)	O(3)#2-Ca(1)-O(6)	80.12(7)
O(3)-Ca(1)#2	2.3203(19)	O(9)-Ca(1)-O(6)	126.54(7)
O(1)#1-Cu(1)-O(1)	180	O(11)-Ca(1)-O(6)	75.39(8)
O(1)#1-Cu(1)-N(1)	96.91(8)	O(10)-Ca(1)-O(6)	85.74(7)
O(1)-Cu(1)-N(1)	83.09(8)	O(8)-Ca(1)-O(6)	49.96(7)
O(1)#1-Cu(1)-N(1)#1	83.09(8)	O(4)-Ca(1)-O(6)	144.68(7)
O(1)-Cu(1)-N(1)#1	96.91(8)	O(3)#2-Ca(1)-O(3)	71.95(7)
N(1)-Cu(1)-N(1)#1	180	O(9)-Ca(1)-O(3)	79.43(7)
O(1)#1-Cu(1)-O(5)	91.70(7)	O(11)-Ca(1)-O(3)	76.65(8)
O(1)-Cu(1)-O(5)	88.30(7)	O(10)-Ca(1)-O(3)	123.21(7)
N(1)-Cu(1)-O(5)	89.18(8)	O(8)-Ca(1)-O(3)	146.82(7)
N(1)#1-Cu(1)-O(5)	90.82(8)	O(4)-Ca(1)-O(3)	50.59(6)
O(3)#2-Ca(1)-O(9)	88.53(8)	O(6)-Ca(1)-O(3)	141.47(7)
Cu(1)-O(1)#1	1.9645(18)	O(3)#2-Ca(1)-O(11)	85.98(9)
Cu(1)-O(1)	1.9645(18)	O(9)-Ca(1)-O(11)	156.00(9)
Cu(1)-N(1)	1.990(2)	O(3)#2-Ca(1)-O(10)	164.78(7)
Cu(1)-N(1)#1	1.990(2)	O(9)-Ca(1)-O(10)	95.46(8)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1 #2 -x,-y+1,-z

Compound 8			
Sr(1)-O(2)	2.508(3)	O(9)-Sr(1)-O(1)	144.65(9)
Sr(1)-O(7)	2.519(3)	O(6)#2-Sr(1)-O(1)	140.68(11)
Sr(1)-O(4)#1	2.612(2)	O(4)-Sr(1)-O(1)	76.12(11)
Sr(1)-O(9)	2.625(3)	O(2)-Sr(1)-O(9)#2	71.85(10)
Sr(1)-O(6)#2	2.647(2)	O(7)-Sr(1)-O(9)#2	134.40(8)
Sr(1)-O(4)	2.649(2)	O(4)#1-Sr(1)-O(9)#2	137.90(8)
Sr(1)-O(1)	2.713(3)	O(9)-Sr(1)-O(9)#2	67.06(10)
Sr(1)-O(9)#2	2.854(3)	O(6)#2-Sr(1)-O(9)#2	74.94(8)
Sr(1)-O(3)	2.921(2)	O(4)-Sr(1)-O(9)#2	86.42(8)
Cu(1)-O(5)#3	1.981(2)	O(1)-Sr(1)-O(9)#2	128.98(13)
Cu(1)-O(5)	1.981(2)	O(2)-Sr(1)-O(3)	73.83(9)
Cu(1)-N(1)#3	1.995(3)	O(7)-Sr(1)-O(3)	142.90(8)
Cu(1)-N(1)	1.995(3)	O(4)#1-Sr(1)-O(3)	109.26(7)
Cu(1)-Cl(1)	2.7480(10)	O(9)-Sr(1)-O(3)	96.28(8)
Cu(1)-Cl(1)#3	2.7480(10)	O(6)#2-Sr(1)-O(3)	133.03(8)
O(4)-Sr(1)#1	2.612(2)	O(4)-Sr(1)-O(3)	46.49(7)
O(6)-Sr(1)#2	2.647(2)	O(1)-Sr(1)-O(3)	75.59(13)
O(9)-Sr(1)#2	2.854(3)	O(9)#2-Sr(1)-O(3)	58.49(7)
O(2)-Sr(1)-O(7)	79.22(9)	O(5)#3-Cu(1)-O(5)	180
O(2)-Sr(1)-O(4)#1	148.12(11)	O(5)#3-Cu(1)-N(1)#3	82.02(10)
O(7)-Sr(1)-O(4)#1	81.44(8)	O(5)-Cu(1)-N(1)#3	97.98(10)
O(2)-Sr(1)-O(9)	136.27(11)	O(5)#3-Cu(1)-N(1)	97.98(10)
O(7)-Sr(1)-O(9)	120.81(9)	O(5)-Cu(1)-N(1)	82.02(10)
O(4)#1-Sr(1)-O(9)	75.58(8)	N(1)#3-Cu(1)-N(1)	180
O(2)-Sr(1)-O(6)#2	87.11(11)	O(5)#3-Cu(1)-Cl(1)	94.34(8)
O(7)-Sr(1)-O(6)#2	69.04(8)	O(5)-Cu(1)-Cl(1)	85.66(8)

O(4)#1-Sr(1)-O(6)#2	109.19(8)	N(1)#3-Cu(1)-Cl(1)	91.34(8)
O(9)-Sr(1)-O(6)#2	68.63(8)	N(1)-Cu(1)-Cl(1)	88.66(8)
O(2)-Sr(1)-O(4)	118.31(9)	O(5)#3-Cu(1)-Cl(1)#3	85.66(8)
O(7)-Sr(1)-O(4)	138.91(8)	O(5)-Cu(1)-Cl(1)#3	94.34(8)
O(4)#1-Sr(1)-O(4)	64.53(8)	N(1)#3-Cu(1)-Cl(1)#3	88.66(8)
O(9)-Sr(1)-O(4)	73.81(8)	N(1)-Cu(1)-Cl(1)#3	91.34(8)
O(6)#2-Sr(1)-O(4)	142.14(8)	Cl(1)-Cu(1)-Cl(1)#3	180
O(2)-Sr(1)-O(1)	75.28(13)	Sr(1)#1-O(4)-Sr(1)	115.47(8)
O(7)-Sr(1)-O(1)	73.22(13)	Sr(1)-O(9)-Sr(1)#2	112.94(10)
O(4)#1-Sr(1)-O(1)	74.99(11)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 -x,-y+1,-z+1 #3 -x,-y+1,-z+2

Compound 9			
O(1)-Cu(2)	1.933(3)	O(3)#1-Sr(1)-O(8)	90.46(11)
Sr(1)-O(4)	2.553(3)	O(4)-Sr(1)-O(6)	86.54(12)
Sr(1)-O(9)	2.574(3)	O(9)-Sr(1)-O(6)	77.33(13)
Sr(1)-O(11)	2.612(3)	O(11)-Sr(1)-O(6)	121.34(10)
Sr(1)-O(10)	2.631(3)	O(10)-Sr(1)-O(6)	89.74(12)
Sr(1)-O(3)#1	2.634(3)	O(3)#1-Sr(1)-O(6)	153.08(11)
Sr(1)-O(8)	2.653(3)	O(8)-Sr(1)-O(6)	80.08(12)
Sr(1)-O(6)	2.675(3)	O(4)-Sr(1)-O(5)	76.65(10)
Sr(1)-O(5)	2.781(3)	O(9)-Sr(1)-O(5)	113.11(12)
Sr(1)-O(4)#1	2.799(3)	O(11)-Sr(1)-O(5)	75.37(9)
Cu(2)-O(1)#2	1.933(3)	O(10)-Sr(1)-O(5)	73.31(12)
Cu(2)-N(1)#2	1.978(3)	O(3)#1-Sr(1)-O(5)	150.39(10)
Cu(2)-N(1)	1.978(3)	O(8)-Sr(1)-O(5)	119.15(11)
O(4)-Sr(1)#1	2.799(3)	O(6)-Sr(1)-O(5)	45.97(10)
O(3)-Sr(1)#1	2.634(3)	O(4)-Sr(1)-O(4)#1	67.10(10)
O(4)-Sr(1)-O(9)	141.05(10)	O(9)-Sr(1)-O(4)#1	114.68(11)
O(4)-Sr(1)-O(11)	78.57(9)	O(11)-Sr(1)-O(4)#1	67.95(8)
O(9)-Sr(1)-O(11)	139.87(10)	O(10)-Sr(1)-O(4)#1	119.05(10)
O(4)-Sr(1)-O(10)	141.30(11)	O(3)#1-Sr(1)-O(4)#1	48.12(8)
O(9)-Sr(1)-O(10)	74.56(11)	O(8)-Sr(1)-O(4)#1	79.94(10)
O(11)-Sr(1)-O(10)	70.73(10)	O(6)-Sr(1)-O(4)#1	150.46(11)
O(4)-Sr(1)-O(3)#1	115.14(9)	O(5)-Sr(1)-O(4)#1	132.20(10)
O(9)-Sr(1)-O(3)#1	75.75(11)	O(1)#2-Cu(2)-O(1)	180
O(11)-Sr(1)-O(3)#1	80.47(9)	O(1)#2-Cu(2)-N(1)#2	83.86(12)
O(10)-Sr(1)-O(3)#1	82.79(11)	O(1)-Cu(2)-N(1)#2	96.14(12)
O(4)-Sr(1)-O(8)	73.88(9)	O(1)#2-Cu(2)-N(1)	96.14(12)
O(9)-Sr(1)-O(8)	68.58(10)	O(1)-Cu(2)-N(1)	83.86(12)
O(11)-Sr(1)-O(8)	143.88(9)	N(1)#2-Cu(2)-N(1)	180
O(10)-Sr(1)-O(8)	143.06(11)	Sr(1)-O(4)-Sr(1)#1	112.90(10)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x,-y+1,-z

Compound 10			
Ba(1)-O(4)#1	2.705(8)	O(4)#1-Ba(1)-O(5)	84.1(2)
Ba(1)-O(3)#2	2.782(8)	O(3)#2-Ba(1)-O(5)	70.9(3)

Ba(1)-O(2)	2.816(8)	O(2)-Ba(1)-O(5)	131.7(3)
Ba(1)-O(2)#1	2.830(8)	O(2)#1-Ba(1)-O(5)	76.1(2)
Ba(1)-O(4)#3	2.960(8)	O(4)#3-Ba(1)-O(5)	153.9(2)
Ba(1)-O(3)#3	2.968(9)	O(3)#3-Ba(1)-O(5)	133.9(2)
Ba(1)-O(5)	3.030(8)	O(4)#1-Ba(1)-O(6)	141.67(18)
Ba(1)-O(6)	3.165(6)	O(3)#2-Ba(1)-O(6)	69.1(2)
Ba(1)-C(6)#3	3.318(11)	O(2)-Ba(1)-O(6)	122.31(17)
Ba(1)-Cl(1)	3.533(8)	O(2)#1-Ba(1)-O(6)	141.3(2)
Cu(1)-O(1)	1.942(7)	O(4)#3-Ba(1)-O(6)	110.32(17)
Cu(1)-O(1)#4	1.942(7)	O(3)#3-Ba(1)-O(6)	67.01(19)
Cu(1)-N(1)	2.003(9)	O(5)-Ba(1)-O(6)	81.07(19)
Cu(1)-N(1)#4	2.003(9)	O(4)#1-Ba(1)-C(6)#3	88.4(2)
O(6)-Ba(1)#5	3.165(6)	O(3)#2-Ba(1)-C(6)#3	79.9(3)
O(2)-Ba(1)#1	2.830(8)	O(2)-Ba(1)-C(6)#3	76.9(2)
C(6)-Ba(1)#6	3.318(11)	O(2)#1-Ba(1)-C(6)#3	125.9(2)
O(4)-Ba(1)#1	2.705(8)	O(4)#3-Ba(1)-C(6)#3	22.7(2)
O(4)-Ba(1)#6	2.960(8)	O(3)#3-Ba(1)-C(6)#3	21.8(2)
O(3)-Ba(1)#2	2.782(8)	O(5)-Ba(1)-C(6)#3	150.8(2)
O(3)-Ba(1)#6	2.968(9)	O(6)-Ba(1)-C(6)#3	87.7(2)
Cl(1)-Ba(1)#1	3.533(8)	O(4)#1-Ba(1)-Cl(1)	125.53(19)
O(4)#1-Ba(1)-O(3)#2	72.6(2)	O(3)#2-Ba(1)-Cl(1)	146.9(2)
O(4)#1-Ba(1)-O(2)	93.7(2)	O(2)-Ba(1)-Cl(1)	59.4(2)
O(3)#2-Ba(1)-O(2)	153.3(3)	O(2)#1-Ba(1)-Cl(1)	59.34(19)
O(4)#1-Ba(1)-O(2)#1	66.2(2)	O(4)#3-Ba(1)-Cl(1)	119.96(16)
O(3)#2-Ba(1)-O(2)#1	129.0(2)	O(3)#3-Ba(1)-Cl(1)	125.6(2)
O(2)-Ba(1)-O(2)#1	59.4(3)	O(5)-Ba(1)-Cl(1)	82.97(19)
O(4)#1-Ba(1)-O(4)#3	72.5(2)	O(6)-Ba(1)-Cl(1)	87.41(17)
O(3)#2-Ba(1)-O(4)#3	90.7(3)	C(6)#3-Ba(1)-Cl(1)	123.60(17)
O(2)-Ba(1)-O(4)#3	63.0(2)	O(1)-Cu(1)-O(1)#4	180
O(2)#1-Ba(1)-O(4)#3	103.7(2)	O(1)-Cu(1)-N(1)	83.2(3)
O(4)#1-Ba(1)-O(3)#3	100.6(3)	O(1)#4-Cu(1)-N(1)	96.8(3)
O(3)#2-Ba(1)-O(3)#3	67.1(3)	O(1)-Cu(1)-N(1)#4	96.8(3)
O(2)-Ba(1)-O(3)#3	94.1(2)	O(1)#4-Cu(1)-N(1)#4	83.2(3)
O(2)#1-Ba(1)-O(3)#3	147.6(2)	N(1)-Cu(1)-N(1)#4	180
O(4)#3-Ba(1)-O(3)#3	44.3(2)		
Symmetry transformations used to ge #1 -x+1,y,-z+1/2 #2 -x+1,-y+1,-z+1	nerate equivalent atom #3 x,-y+1,z+1/2	s: #4 -x+3/2,-y+3/2,-z+1 #5 -x+1,y,-z+3/2	#6 x,-y+1,z-1/2

Fig. S1 The coordination environments of $L_{Co}(a)$, $L_{Ni}(b)$ and $L_{Cu}(c)$, respectively.

Fig. S2 The XRPD patterns for L_{Co} , L_{Cu} , L_{Ni} and 1-10 in a-m respectively.

Fig. S3 The TGA curves of complexes 1-10.

Fig. S4 Magnetization vs H plot for compound 1.

Fig. S5 Magnetization vs H plot for compound 2.

Fig. S6 Magnetization *vs H* plot for compound 4.

Fig. S7 Magnetization vs H plot for compound 5.

Fig. S8 Magnetization vs H plot for compound 10.