Supporting Information

Structural Insights into a Hexamorphic System of an Isoniazid Derivative

D. Hean, T. Gelbrich, U. J. Griesser, J. P. Michael, A. Lemmerer

Table of Contents

SI1. Solution crystallization experimental details	3
SI2. Representative DSC traces for IPH I – III	4
SI3. Powder X-ray diffraction patterns for forms IPH $I - III$ and V	6
SI4. FT-IR and Raman spectra of IPH $I - III$ and V	8
SI5. XPac Studies	11
SI6. ORTEP diagrams and hydrogen bonding tables for IPH $I - VI$	13
SI7. CIF check reports for IPH I – VI	17
References	

SI1. Solution crystallization experimental details

	Solvent system (10 ml)						
IPH	Slow evaporation	Fast evaporation	Vapour difusion (polar/non-polar)				
Π	acetonitrile	-	-				
III	-	ethanol/ water (1:1)	-				
II III V	acetonitrile - acetone, butanol, ethanol, methanol, 1-propanol, water. acetone/cyclohexane (1:1) butanol/cyclohexane (1:1) ethyl acetate/cyclohexane (1:1) ethyl acetate/cyclohexane (1:1) methanol/cyclohexane (1:1) ethyl acetate/cyclohexane (1:1) methanol/cyclohexane (1:1) ethyl acetate/cyclohexane (1:1) methanol/diethyl ether (1:1) ethyl acetate/diethyl ether (1:1) ethyl acetate/diethyl ether (1:1) methanol/diethyl ether (1:1) methanol/diethyl ether (1:1) methanol/diethyl ether (1:1) methanol/diethyl ether (1:1) methanol/n-hexane (1:1) methanol/n-hexane (1:1) ethyl acetate/n-hexane (1:1) methanol/n-hexane (1:1) methanol/n-hexane (1:1) methanol/n-propanol (1:1) butanol/n-propanol (1:1) butanol/1-propanol (1:1) methanol/1-propanol (1:1) methanol/1-propanol (1:1) methanol/toluene (1:1) methanol/toluene (1:1) ethyl acetate/toluene (1:1) methanol/toluene (1:1) methanol/toluene (1:1)	- ethanol/ water (1:1) ethanol/ water (1:1)					
	ethanol/tetrahydrofuran (1:1) ethyl acetate/ tetrahydrofuran (1:1) methanol/ tetrahydrofuran (1:1)						
	chlorofrom/methanol (2:1) cyclohexane/methanol (2:1) diethyl ether/methanol (2:1) 1,4-dioxane/methanol (2:1) ethyl acetate/methanol (2:1) <i>n</i> -hexane/methanol (2:1) tetrahydrofuran/methanol (2:1)						

Table S1. Solvent and evaporation procedures for obtaining IPH II, III and V.

SI2. Representative DSC traces for IPH I – III IPH I

Figure S1: Representative DSC trace (exothermic is up) for numerous experiments for the melting and cool of IPH **I**. The top DSC trace (red) shows the melting endotherm of phase pure IPH **I** and the lower one (blue) the crystallization of this form from the melt on cooling.

Figure S2: Representative DSC trace (exothermic is up) of IPH **II**. The upper DSC trace (red) shows the inhomogeneous melting of IPH **II** (melting of **II** and simultaneous crystallization of **I**) followed by the melting endotherm of IPH **I**.

IPH III

Figure S3: Representative DSC trace (exothermic is up) of IPH III. The DSC trace shows a similar behaviour as IPH II but the onset of the inhomogeneous melting process is observed at 163 °C indicating a lower melting point.

Figure S4: Experimental PXRD pattern of IPH I, recorded at room temperature, and the PXRD pattern calculated from single crystal structure data of IPH I (at 173 K).

IPH II

Figure S5: PXRD of IPH **II** compared to PXRD of single crystal structure determination of IPH **II**. The experimental pattern was calculated at room temperature and the calculated pattern at 173 K.

Figure S6: PXRD of IPH **III** compared to PXRD of single crystal structure determination of IPH **III**. The experimental pattern was calculated at room temperature and the calculated pattern at 173 K.

IPH V

Figure S7: PXRD of IPH V compared to PXRD of single crystal structure determination of IPH V. The experimental pattern was calculated at room temperature and the calculated pattern at 173 K.

SI4. FT-IR and Raman spectra of IPH I – III and V

FT-IR spectra of IPH I - III and V

Figure S8: FT-IR spectra of IPH I - III and V. A spectrum for IPH IV and VI is unavailable as result from the small quantities recovered.

Raman spectroscopy of IPH $\mathbf{I}-\mathbf{III}$ and \mathbf{V}

IPH I

Figure S9: Raman spectrum of IPH I.

Figure S11: Raman spectrum of IPH III.

Figure S12: Raman spectrum of IPH V.

SI5. XPac Studies

All comparisons were carried out with the program *XPac*.¹ Dissimilarity parameters were calculated in the previously described manner ² (see ref. 3 for additional reference examples). Two sets of calculations were performed. The first set was based on geometrical parameters calculated from all 18 non-H atomic positions matching the IPH template structure, and the dissimilarity indices obtained from it will be denoted x_{18} . For the second set of calculations, only a core molecular unit defined by the positions of eight atoms (C1, C6, O1, N1, N3, C8, C7, C9; see Scheme 1) was used to minimise the effect of variations in the rotation angles of aromatic rings about the C1–C6 and C8–C9 bonds (the dissimilarity indices from this analysis will be denoted x_8).

List of abbreviations

SC	supramolecular construct
n	in the representative molecular cluster of a crystal structure, the number of the surrounding
	molecules which together with the central molecule define a particular SC
t_1, t_2	basis vectors of an SC
$\angle t_{1,2}$	angle formed between two base vectors of an SC
x_8, x_{18}	XPac dissimilarity parameters calculated obtained with different sets of geometrical
	parameters obtained from different sets of atomic positions (see above)

SC	Description	n	Dimension	Occurrences
X1	monolayer	8	2D	IPH III, IPH V, AHE, PEH
X2	bilayer	12	2D	IPH V, PEH
Y1	monolayer	8	2D	IPH II (A), IPH IV
D	dimeric unit	1	0D	IPH II (B), IPH VI

Table S3. Corresponding lattice parameters for SCs X1 and X2.

Structure	IPH I	II	IPH V		AHE		РЕН	
$\overline{t_1}$	100	6.354 Å	010	5.546 Å	010	5.784 Å	010	5.594 Å
<i>t</i> ₂	010	7.662 Å	001	8.319 Å	100	8.594 Å	100	8.224 Å
$\angle t_{1,2}$		90°		90°	ç	90°		90°

Table S4. Corresponding lattice parameters for SC Y1.

Structure	IPH I	Ι	IPH IV	V		
$\overline{t_1}$	001	8.235 Å	001	8.259 Å		
t_2	100	10.211 Å	ī ₀₀	10.612 Å		
$\angle t_{1,2}$		110.2°		109.6°		

Table S5. *XPac* dissimilarity parameters x_8 and x_{18} for the identified SCs.

Structure 1	Structure 2	Dim	SC /	n	x_8	<i>x</i> ₁₈
AHE	IPH III	2D	X1 8	8	11.7	14.2
AHE	IPH V	2D	X1 8	8	3.0	5.0
AHE	PEH	2D	X1 8	8	3.3	3.8
IPH III	IPH V	2D	X1 8	8	10.7	13.6
IPH III	PEH	2D	X1 8	8	9.7	12.6
IPH \mathbf{V}	РЕН	2D	X2	12	1.1	2.2
IPH II	IPH IV	2D	Y1 8	8	8.7	15.0
IPH II	IPH VI	0D	D	1	5.8	8.2

SI6. ORTEP diagrams and hydrogen bonding tables for IPH I – VI IPH I

Figure S13: The asymmetric unit of IPH I depicting the numbering scheme of 50% displacement ellipsoids.

IPH II

Figure S14: The asymmetric unit of IPH II depicting the numbering scheme of 50% displacement ellipsoids.

IPH III

Figure S15: The asymmetric unit of IPH III depicting the numbering scheme of 50% displacement ellipsoids.

IPH IV

Figure S16: The asymmetric unit of IPH IV depicting the numbering scheme of 50% displacement ellipsoids.

 $\mathrm{IPH}\;\mathbf{V}$

Figure S17: The asymmetric unit of IPH V depicting the numbering scheme of 50% displacement ellipsoids.

Figure S18: The asymmetric unit of IPH VI depicting the numbering scheme of 50% displacement ellipsoids.

<u>H-bond tables for IPH I - VI</u>

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1B)-H(1B)O(1A)#1	0.90(3)	2.04(3)	2.934(3)	169(3)
N(1C)-H(1C)O(1D)#2	1.00(3)	1.96(3)	2.937(3)	165(3)
N(1D)-H(1D)O(1C)#3	0.89(3)	2.03(3)	2.903(3)	166(3)
N(1A)-H(1A)O(1B)#4	0.94(3)	2.00(3)	2.926(3)	170(2)

Table S5. H-bonds for IPH I

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z+1 #2 x,y+1,z #3 x,y-1,z #4 -x+2, y, -z+1

Table S6. H-bonds for IPH II

d(D-H)	d(HA)	d(DA)	<(DHA)
0.911(18)	2.068(18)	2.9748(14)	173.3(15)
0.866(18)	2.245(18)	3.0930(15)	166.4(15)
	d(D-H) 0.911(18) 0.866(18)	d(D-H) d(HA) 0.911(18) 2.068(18) 0.866(18) 2.245(18)	d(D-H)d(HA)d(DA)0.911(18)2.068(18)2.9748(14)0.866(18)2.245(18)3.0930(15)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z-1/2 #2 -x+2,-y,-z+2

Table S7. H-bonds for IPH III

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.89(2)	2.04(2)	2.911(2)	168(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,z

Table S8. H-bonds for IPH IV

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.89(3)	2.17(4)	3.032(3)	162(3)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2

Table S9. H-bonds for IPH V

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.90(3)	1.95(3)	2.845(2)	176(2)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2

Table S10. H-bonds for IPH VI

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.94(3)	1.95(3)	2.887(3)	175(3)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2

SI7. CIF check reports for IPH I – VI

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) IPH_I

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: IPH_I

Bond precision: C-C = 0.0044 A Wavelength=0.71073					
Cell: a	a=9.7360(6)	b=9.8752(e	6)	c=26.1543(16)	
Temperature: 1	alpha=92.856(4) .73 K	beta=100.2	295(4)	gamma=91.291(4)	
-					
	Calculated		Reported	l	
Volume	2469.8(3)		2469.8(3	:)	
Space group	P -1		P-1		
Hall group	-P 1		-P 1		
Moiety formula	C14 H13 N3 O		C14 H13	N3 O	
Sum formula	C14 H13 N3 O		C14 H13	N3 O	
Mr	239.27		239.27		
Dx,g cm-3	1.287		1.287		
Z	8		8		
Mu (mm-1)	0.084		0.084		
F000	1008.0		1008.0		
F000'	1008.37				
h,k,lmax	11,11,31		11,11,31		
Nref	9178		9177		
Tmin, Tmax	0.994,0.998				
Tmin'	0.967				
Correction meth	od= Not given				
Data completene	Data completeness= 1.000 Theta(max) = 25.500				
R(reflections) =	0.0559(4183)	wR2(ref]	lections)	= 0.1600(9177)	
S = 0.995	Npar=	= 669			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B PLAT414_ALERT_2_B Short Intra D-HH-X H1D H7D1 1.87	Ang.
Alert level C	
PLAT026 ALERT 3 C Ratio Observed / Unique Reflections too Low 46	010
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for C1C	Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	Ang.
PLAT353_ALERT_3_C Long N-H (N0.87,N1.01A) N1C - H1C 1.02	Ang.
PLAT414_ALERT_2_C Short Intra D-HH-X H1A H7A3 1.91	Ang.
PLAT414_ALERT_2_C Short Intra D-HH-X H1B H7B1 1.96	Ang.
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 5.956	Check
<pre>Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal 0.00400 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 12 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 C14 H13 N3 0 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 4 C14 H13 N3 0 PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) 1</pre>	Degree Note Note Note Report
<pre>0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 7 ALERT level C = Check. Ensure it is not caused by an omission or oversig 5 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficien 5 ALERT type 3 Indicator that the structure guality may be low</pre>	ht t

3 ALERT type 4 Improvement, methodology, query or suggestion

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT026_IPH_I
;
PROBLEM: Ratio Observed / Unique Reflections too Low ....
                                                          46 %
RESPONSE: ...
;
vrf_PLAT242_IPH_I
PROBLEM: Low
              Ueq as Compared to Neighbors for ..... C1C Check
RESPONSE: ...
;
_vrf_PLAT340_IPH_I
PROBLEM: Low Bond Precision on C-C Bonds ..... 0.0044 Ang.
RESPONSE: ...
;
_vrf_PLAT353_IPH_I
;
             N-H (N0.87,N1.01A) N1C - H1C ... 1.02 Ang.
PROBLEM: Long
RESPONSE: ...
```

⁰ ALERT type 5 Informative message, check

```
;
_vrf_PLAT414_IPH_I
;
PROBLEM: Short Intra D-H..H-X H1A .. H7A3 .. 1.91 Ang.
RESPONSE: ...
;
_vrf_PLAT906_IPH_I
;
PROBLEM: Large K value in the Analysis of Variance ..... 5.956 Check
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014

IPH II

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) IPH II

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: IPH_II

Bond precision:	C-C = 0.0018 A	Wavelength=0.71073				
Cell:	a=10.2114(2) alpha=90	b=30.3315(7) beta=110.193(1	c=8.2353(2) gamma=90			
Temperature:	173 K		, 5			
	Calculated	Repor	rted			
Volume	2393.92(9)	2393.	.92(9)			
Space group	P 21/c	P 21/	/c			
Hall group	-P 2ybc	-P 23	ybc			
Moiety formula	C14 H13 N3 O	C14 H	113 N3 O			
Sum formula	C14 H13 N3 O	C14 H	113 N3 O			
Mr	239.27	239.2	27			
Dx,g cm-3	1.328	1.328	3			
Z	8	8				
Mu (mm-1)	0.087	0.087	7			
F000	1008.0	1008.	. 0			
F000'	1008.37					
h,k,lmax	13,40,10	13,40	0,10			
Nref	5787	5778				
Tmin, Tmax	0.971,0.991	0.954	4,0.991			
Tmin'	0.953					
Correction metho	od= MULTI-SCAN					
Data completeness= 0.998 Theta(max) = 28.000						
R(reflections) =	0.0398(4579)	wR2(reflection	ons)= 0.1117(5778)			
S = 1.038	Npar=	335				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C	
PLAT414_ALERT_2_C Short Intra D-HH-X H1A H14C 1.96 And	5.
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 5 Rep	ort
PLAT922_ALERT_1_C wR2 in the CIF and FCF Differ by	ck
PLAT923_ALERT_1_C S values in the CIF and FCF Differ by0.015 Che	ck
Alert level G	
PLAT432 ALERT 2 G Short Inter XY Contact OIA C2A 2.99 And	1 -
PLAT912_ALERT_4_G MISSING # OI FCF Reflections Above Sin/L= 0.600 4 Not	,e
0 ALERT level A = Most likely a serious problem - resolve or explain	
0 ALERT level B = A potentially serious problem, consider carefully	
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight	
2 ALERT level G = General information/check it is not something unexpected	
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data	
2 ALERT type 2 Indicator that the structure model may be wrong or deficient	
1 ALERT type 3 Indicator that the structure quality may be low	
1 ALERT type 4 Improvement, methodology, query or suggestion	
0 ALERT type 5 Informative message, check	

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT414_IPH_II
PROBLEM: Short Intra D-H..H-X H1A .. H14C .. 1.96 Ang.
RESPONSE: ...
;
_vrf_PLAT911_IPH_II
PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.600
                                                            5 Report
RESPONSE: ...
;
_vrf_PLAT922_IPH_II
;
PROBLEM: wR2 in the CIF and FCF Differ by ..... -0.0013 Check
RESPONSE: ...
;
_vrf_PLAT923_IPH II
;
          values in the CIF and FCF Differ by ..... -0.015 Check
PROBLEM: S
RESPONSE: ...
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014

Datablock IPH_II - ellipsoid plot

IPH III

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) IPH_III

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: IPH_III

Bond precision:	C-C = 0.0028 A	W	Wavelength=0.71073			
Cell:	a=6.3542(4) alpha=90	b=7.662 beta=90	4(6)	c=49.231(3) gamma=90		
Temperature:	173 K					
	Calculated		Reported			
Volume	2397.0(3)		2397.0(3)			
Space group	Pbca		Pbca			
Hall group	-P 2ac 2ab		-P 2ac 2a	b		
Moiety formula	C14 H13 N3 O		C14 H13 N	3 0		
Sum formula	C14 H13 N3 O		C14 H13 N	3 0		
Mr	239.27		239.27			
Dx,g cm-3	1.326		1.326			
Z	8		8			
Mu (mm-1)	0.087		0.087			
F000	1008.0		1008.0			
F000'	1008.37					
h,k,lmax	7,9,59		7,9,59			
Nref	2222		2124			
Tmin, Tmax	0.989,0.996		0.964,0.9	96		
Tmin'	0.964					
Correction metho	od= MULTI-SCAN					
Data completeness= 0.956		Theta(ma	x)= 25.50	0		
R(reflections) =	0.0425(1777)	wR2(refl	ections)=	0.1317(2124)		
S = 1.194	Npar=	: 168				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low .	0.956	Note
Alert level C		
PLAT906 ALERT 3 C Large K value in the Analysis of Variance	5.528	Check
PLAT911 ALERT 3 C Missing # FCF Refl Between THmin & STh/L=	0.600 80	Report
PLAT918 ALERT 3 C Reflection(s) with I(obs) much smaller I(c	alc). 1	Check
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outlier	s 1	Check
PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimiz	ed S . 38.26	
PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= PLAT955_ALERT_1_G Reported (CIF) and Actual (FCF) Lmax Diffe	3 0.600 15 r by . 1	Report Note Units
0 ALERT level A = Most likely a serious problem - resolve	or explain	
1 ALERT level B = A potentially serious problem, consider	carefully	
5 ALERT level C = Check. Ensure it is not caused by an om	ission or oversig	ſht
3 ALERT level G = General information/check it is not som	ething unexpected	l
1 ALERT type 1 CIF construction/syntax error, inconsisten	t or missing data	L
0 ALERT type 2 Indicator that the structure model may be	wrong or deficier	it
7 ALERT type 3 Indicator that the structure quality may be	e low	
1 ALERT type 4 Improvement, methodology, query or suggest	ion	
0 ALERT type 5 Informative message, check		

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT906_IPH_III
;
PROBLEM: Large K value in the Analysis of Variance .....
                                                            5.528 Check
RESPONSE: ...
;
_vrf_PLAT911_IPH_III
;
PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.600
                                                                80 Report
RESPONSE: ...
;
_vrf_PLAT918_IPH_III
;
PROBLEM: Reflection(s) with I(obs) much smaller I(calc) .
                                                                1 Check
RESPONSE: ...
;
_vrf_PLAT934_IPH_III
;
PROBLEM: Number of (Iobs-Icalc)/SigmaW > 10 Outliers ....
                                                                1 Check
RESPONSE: ...
;
_vrf_PLAT939_IPH_III
;
```

```
PROBLEM: Large Value of Not (SHELXL) Weight Optimized S . 38.26
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014

IPH IV

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) IPH_IV

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: IPH_IV

Bond precision:	C-C = 0.0044 A	Wavelength=0.71073			
Cell:	a=10.6217(16) alpha=90	b=14.442(2 beta=109.6	2) 523(5)	c=8.2589(12) gamma=90	
Temperature:	173 K			5	
	Calculated	I	Reported		
Volume	1193.3(3)		1193.3(3)		
Space group	P 21/c	I	P2(1)/c		
Hall group	-P 2ybc		-P 2ybc		
Moiety formula	C14 H13 N3 O	(C14 H13 N3	0	
Sum formula	C14 H13 N3 O	(C14 H13 N3	0	
Mr	239.27	:	239.27		
Dx,g cm-3	1.332	:	1.332		
Z	4	4	4		
Mu (mm-1)	0.087		0.087		
F000	504.0		504.0		
F000'	504.19				
h,k,lmax	11,16,9	:	11,16,9		
Nref	1730		1723		
Tmin, Tmax	0.995,0.997		0.969,0.98	9	
Tmin'	0.952				
Correction metho	od= MULTI-SCAN				
Data completeness= 0.996		Theta(ma:	x)= 23.310		
R(reflections) =	0.0532(1183)	wR2(reflections) = 0.1241(1723)			
S = 1.039	Npar=	167			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🞈 Alert level B THETMO1 ALERT 3 B The value of sine(theta max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5568 RT 2 B Short Intra D-H..H-X H1 .. H7A PLAT414 ALERT 2 B Short Intra D-H...H-X 1.81 Ang. . . Alert level C 0.0044 Ang. 6.100 Check PLAT340 ALERT 3 C Low Bond Precision on C-C Bonds PLAT906 ALERT_3_C Large K value in the Analysis of Variance PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.557 4 Report Alert level G PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 52 % PLAT910 ALERT 3 G Missing # of FCF Reflections Below Th(Min) 3 Report 0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT340_IPH_IV
;
PROBLEM: Low Bond Precision on C-C Bonds ...... 0.0044 Ang.
RESPONSE: ...
;
_vrf_PLAT906_IPH_IV
;
PROBLEM: Large K value in the Analysis of Variance ..... 6.100 Check
RESPONSE: ...
;
_vrf_PLAT911_IPH_IV
;
PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.557 4 Report
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014

Datablock IPH_IV - ellipsoid plot

 $\mathrm{IPH}\;\mathbf{V}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) IPH_V

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: IPH_V

Bond precision:	C-C = 0.0	030 A	Wavelength=0.71073				
Cell:	a=25.8998(alpha=90	(13)	b=5.5463 beta=95.	(3) 876(4)	c=8.3187(4) gamma=90		
Temperature:	173 K						
	Calculated			Reported			
Volume	1188.69(11))		1188.69(1	.0)		
Space group	P 21/c			P 21/C			
Hall group	-P 2ybc			-P 2ybc			
Moiety formula	C14 H13 N3	0		C14 H13 N	13 0		
Sum formula	C14 H13 N3	0		C14 H13 N	13 0		
Mr	239.27			239.27			
Dx,g cm-3	1.337			1.337			
Z	4			4			
Mu (mm-1)	0.088			0.088			
F000	504.0			504.0			
F000'	504.19						
h,k,lmax	34,7,10			34,7,10			
Nref	2877			2866			
Tmin, Tmax	0.979,0.995	5		0.962,0.9	95		
Tmin'	0.961						
Correction metho	od= MULTI-S	CAN					
Data completeness= 0.996 Theta(max) = 28.000				00			
R(reflections) =	0.0605(224	45)	wR2(refl	ections)=	= 0.1587(2866)		
S = 1.020		Npar= 1	68				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test. Alert level C
 PLAT906_ALERT_3_C Large K value in the Analysis of Variance 2.436 Check
 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 9 Report
 Alert level G
 PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) 1 Report
 O ALERT level A = Most likely a serious problem - resolve or explain
 O ALERT level B = A potentially serious problem, consider carefully
 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
 1 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT906_IPH_V
;
PROBLEM: Large K value in the Analysis of Variance ..... 2.436 Check
RESPONSE: ...
;
_vrf_PLAT911_IPH_V
;
PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.600 9 Report
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014

Datablock IPH_V - ellipsoid plot

IPH VI

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) IPH_VI

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: IPH_VI

Bond precision:	C-C = 0.0040 A	Wavelength=0.71073		
Cell:	a=13.488(2)	b=9.6611(15)	c=9.3604(13)	
Temperature:	alpha=90 173 K	beta=90.183	(5) gamma=90	
	Calculated	Re	eported	
Volume	1219.7(3)	12	219.7(3)	
Space group	P 21/c	P2	2(1)/c	
Hall group	-P 2ybc	- I	2ybc	
Moiety formula	C14 H13 N3 O	Cl	L4 H13 N3 O	
Sum formula	C14 H13 N3 O	Cl	L4 H13 N3 O	
Mr	239.27	23	39.27	
Dx,g cm-3	1.303	1.	. 303	
Z	4	4		
Mu (mm-1)	0.085	0.	.085	
F000	504.0	50	04.0	
F000'	504.19			
h,k,lmax	17,12,12	17	7,12,12	
Nref	2940	29	900	
Tmin, Tmax	0.965,0.997	0.	.965,0.997	
Tmin'	0.965			
Correction metho	od= MULTI-SCAN			
Data completenes	ss= 0.986	Theta(max)) = 28.000	
R(reflections) =	0.0729(1992)	wR2(reflec	ctions) = 0.2468(2900))
S = 1.087	Npar=	168		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C		
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600	33	Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF	5	Note
PLAT918_ALERT_3_C Reflection(s) with I(obs) much smaller I(calc) .	1	Check
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers	1	Check
PLAT939_ALERT_3_C Large Value of Not (SHELXL) Weight Optimized S .	37.29	

Alert level G		
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical	?	Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large.	0.14	Report
PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min)	3	Report
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	4	Note

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
4 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
6 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
```

```
0 ALERT type 5 Informative message, check
```

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PLAT911_IPH_VI
PROBLEM: Missing # FCF Refl Between THmin & STh/L= 0.600
                                                              33 Report
RESPONSE: ...
;
_vrf_PLAT913_IPH_VI
PROBLEM: Missing # of Very Strong Reflections in FCF ....
                                                               5 Note
RESPONSE: ...
;
_vrf_PLAT918_IPH_VI
PROBLEM: Reflection(s) with I(obs) much smaller I(calc) . 1 Check
RESPONSE: ...
;
_vrf_PLAT934_IPH_VI
PROBLEM: Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
RESPONSE: ...
;
_vrf_PLAT939 IPH VI
PROBLEM: Large Value of Not (SHELXL) Weight Optimized S .
                                                           37.29
RESPONSE: ...
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014

References

- 1. T. Gelbrich and M. B. Hursthouse, *CrystEngComm*, 2005, 7, 324-336.
- 2. T. Gelbrich, T. L. Threlfall and M. B. Hursthouse, *CrystEngComm*, 2012, 14, 5454-5464.
- 3. T. Gelbrich, T. L. Threlfall and M. B. Hursthouse, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 2012, **68**, 0421-0426.