## Electronic Supplementary Information for:

## The Structure of Monoclinic $Na_2B_{10}H_{10}$ : A Combined Diffraction, Spectroscopy, and Theoretical Approach

*Hui Wu*<sup>\*a,b</sup> *Wan Si Tang*,<sup>a,b</sup> *Wei Zhou*,<sup>a,b</sup> *Vitalie Stavila*,<sup>c</sup> *John J. Rush*,<sup>a,b</sup> *and Terrence J. Udovic*<sup>\*a</sup>

<sup>*a*</sup>NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102

<sup>b</sup>Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115

<sup>c</sup>Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94551

## How to view phonon animations using the V\_Sim software\*

The **Na2B10H10\_phonons.xyz** and **Na2B10D10\_phonons.xyz** files contain the information needed to view the animated (gamma-point) phonon normal modes from the DFT-optimized 0 K  $Na_2^{11}B_{10}H_{10}$  and  $Na_2^{11}B_{10}D_{10}$  structures, respectively, following the steps below:

- Get the V\_Sim software (It is free, and there is no need to install).
- Go to the following webpage and download the Win32 binaries: http://www-drfmc.cea.fr/L\_Sim/V\_Sim/download.html
- Unzip the zip file to wherever you want to put the software.
- Click "~V\_Sim\bin\V\_sim.exe" to start the V\_Sim program, then open the Na2B10H10\_phonons.xyz or Na2B10D10\_phonons.xyz file to view the phonon animations.
- To build bonds in the structure, check the box on the left side of the "Pairs" button, and click the "Pairs" button.
- Highlight a pair and click the "Auto set" button to allow bonding.
- Adjust the "Link parameters," if desired.
- Adjust the element color, radius, etc. on the "Elements" tab, if desired.
- Go to the "Phonons" tab, highlight a phonon mode, and click the "Play" button to view a phonon animation.
- \* N.B., the use of this software does not imply its recommendation or endorsement by NIST.



**Fig. S1** Comparison of the simulated Na<sub>2</sub><sup>11</sup>B<sub>10</sub>D<sub>10</sub> NPD patterns (assuming  $\lambda$ =1.5398 Å) for the (top) modified 2.5 K and (bottom) published [from K. Hofmann and B. Albert, *Z. Kristallogr.*, 2005, **220**, 142-146] 100 K structures, clearly indicating the broad disagreement between the two structure models and confirming the substantial sensitivity of NPD to the particular structural details.



**Fig. S2** Plot of the monoclinic lattice parameters versus temperature for  $Na_2B_{10}H_{10}$  based on synchrotron XRPD data. Standard uncertainties are smaller than the symbol size.



**Fig. S3** Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) profiles at 410 K for the high-temperature cubic structure [space group *Fm*-3*m*; from T. J. Udovic et al., *Adv. Mater.*, 2014, **26**, 7622-7626] of (top) Na<sub>2</sub><sup>11</sup>B<sub>10</sub>D<sub>10</sub> (NPD,  $\lambda$ =1.5398(2) Å, *a*=9.8397(5) Å, R<sub>wp</sub>=0.0491, R<sub>p</sub>=0.0412,  $\chi^2$ =1.403) and (bottom) Na<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (synchrotron XRPD,  $\lambda$ =0.7296(1) Å, *a*=9.8517(6), R<sub>p</sub>=0.136, R<sub>wp</sub>=0.0924,  $\chi^2$ =0.482). Vertical bars indicate the calculated positions of the Bragg peaks. This structure is the same as that reported by Udovic et al. except for small changes in the Na site occupancies. (See Tables S5 and S6.) Standard uncertainties are commensurate with the scatter in the data.



**Fig. S4** Comparison of the published monoclinic  $Na_2B_{10}H_{10}$  crystal structure [from K. Hofmann and B. Albert, *Z. Kristallogr.*, 2005, **220**, 142-146] (top) before and (bottom) after energyoptimization. Yellow, green, and white spheres denote Na, B, and D atoms, respectively. Although the energy-optimized structure is the nearest stable configuration to the published structure, there are significant differences between the two structures with respect to anion distortions and orientations and cation positions.

| Na2 <sup>11</sup> B10D10 |               | T = 2.5         | K            | N              | PD Cu(311)/λ=1                     | .5398(2) Å               |
|--------------------------|---------------|-----------------|--------------|----------------|------------------------------------|--------------------------|
| a = 6.6535(5)            | ) Å; b= 12.96 | A(1) Å; $c = 1$ | 1.8510(9) Å; | γ=120.203(4) ° | V = 883.4(1)                       | Å <sup>3</sup> ; $Z = 4$ |
| Atom                     | Site          | x               | у            | Ζ.             | U <sub>iso</sub> (Å <sup>2</sup> ) | Occ.                     |
| Na1                      | 4 <i>e</i>    | 0.239(3)        | 0.394(2)     | 0.492(2)       | 0.030(3)                           | 1                        |
| Na2                      | 4 <i>e</i>    | 0.216(3)        | 0.630(2)     | 0.015(2)       | 0.030(3)                           | 1                        |
| B1                       | 4 <i>e</i>    | 0.5610(5)       | 0.5103(2)    | 0.7580(3)      | 0.0144(2)                          | 1                        |
| B2                       | 4 <i>e</i>    | 0.4361(5)       | 0.5967(2)    | 0.6170(2)      | 0.0144(2)                          | 1                        |
| B3                       | 4 <i>e</i>    | 0.5465(5)       | 0.7198(2)    | 0.6933(2)      | 0.0144(2)                          | 1                        |
| <b>B4</b>                | 4 <i>e</i>    | 0.7372(4)       | 0.6079(2)    | 0.7438(3)      | 0.0144(2)                          | 1                        |
| B5                       | 4 <i>e</i>    | 0.2897(4)       | 0.6692(2)    | 0.6872(2)      | 0.0144(2)                          | 1                        |
| <b>B6</b>                | 4 <i>e</i>    | 0.4144(5)       | 0.5822(2)    | 0.8284(2)      | 0.0144(2)                          | 1                        |
| B7                       | 4 <i>e</i>    | 0.7204(4)       | 0.5980(2)    | 0.8928(2)      | 0.0144(2)                          | 1                        |
| <b>B8</b>                | 4 <i>e</i>    | 0.5293(5)       | 0.7098(2)    | 0.8431(2)      | 0.0144(2)                          | 1                        |
| <b>B9</b>                | 4 <i>e</i>    | 0.2726(4)       | 0.5390(2)    | 0.6725(3)      | 0.0144(2)                          | 1                        |
| B10                      | 4 <i>e</i>    | 0.7846(5)       | 0.7106(2)    | 0.8439(3)      | 0.0144(2)                          | 1                        |
| D1                       | 4 <i>e</i>    | 0.6218(6)       | 0.4221(2)    | 0.7663(4)      | 0.0233(4)                          | 1                        |
| D2                       | 4 <i>e</i>    | 0.3890(6)       | 0.5842(3)    | 0.5056(2)      | 0.0233(4)                          | 1                        |
| D3                       | 4 <i>e</i>    | 0.5432(7)       | 0.7922(2)    | 0.6292(3)      | 0.0233(4)                          | 1                        |
| D4                       | 4 <i>e</i>    | 0.8890(5)       | 0.5818(3)    | 0.7233(4)      | 0.0233(4)                          | 1                        |
| D5                       | 4 <i>e</i>    | 0.1176(5)       | 0.7224(3)    | 0.6406(4)      | 0.0233(4)                          | 1                        |
| D6                       | 4 <i>e</i>    | 0.3466(6)       | 0.5522(3)    | 0.8991(3)      | 0.0233(4)                          | 1                        |
| D7                       | 4 <i>e</i>    | 0.8515(6)       | 0.5629(3)    | 0.9997(2)      | 0.0233(4)                          | 1                        |
| D8                       | 4 <i>e</i>    | 0.4820(7)       | 0.7709(2)    | 0.9024(3)      | 0.0233(4)                          | 1                        |
| D9                       | 4 <i>e</i>    | 0.1078(5)       | 0.4824(3)    | 0.6226(3)      | 0.0233(4)                          | 1                        |
| D10                      | 4 <i>e</i>    | 0.9491(6)       | 0.7675(3)    | 0.8946(3)      | 0.0233(4)                          | 1                        |

**Table S1.** The refined Na<sub>2</sub><sup>11</sup>B<sub>10</sub>D<sub>10</sub> structural parameters at 2.5 K associated with the monoclinic space group  $P2_1/c$  (No.14) derived from NPD data.

| Na2 <sup>11</sup> B10D10 |               | T = 295         | 5 K         | N                | PD Cu(311)/λ=1                     | .5398(2) Å     |
|--------------------------|---------------|-----------------|-------------|------------------|------------------------------------|----------------|
| a = 6.7137(7)            | ) Å; b= 13.12 | A(1) Å; $c = 1$ | 1.940(1) Å; | γ= 120.524(6) °; | V = 906.2(2) Å                     | $A^{3}; Z = 4$ |
| Atom                     | Site          | x               | у           | Z.               | U <sub>iso</sub> (Å <sup>2</sup> ) | Occ.           |
| Na1                      | 4 <i>e</i>    | 0.217(6)        | 0.399(3)    | 0.484(4)         | 0.094(7)                           | 1              |
| Na2                      | 4 <i>e</i>    | 0.224(6)        | 0.625(3)    | -0.012(4)        | 0.094(7)                           | 1              |
| B1                       | 4 <i>e</i>    | 0.5645(8)       | 0.5121(2)   | 0.7598(4)        | 0.0287(3)                          | 1              |
| B2                       | 4 <i>e</i>    | 0.4351(7)       | 0.5967(3)   | 0.6188(4)        | 0.0287(3)                          | 1              |
| B3                       | 4 <i>e</i>    | 0.5424(8)       | 0.7190(2)   | 0.6937(4)        | 0.0287(3)                          | 1              |
| <b>B4</b>                | 4 <i>e</i>    | 0.7352(6)       | 0.6096(3)   | 0.7442(5)        | 0.0287(3)                          | 1              |
| B5                       | 4 <i>e</i>    | 0.2902(6)       | 0.6675(3)   | 0.6890(5)        | 0.0287(3)                          | 1              |
| <b>B6</b>                | 4 <i>e</i>    | 0.4195(7)       | 0.5822(3)   | 0.8303(4)        | 0.0287(3)                          | 1              |
| B7                       | 4 <i>e</i>    | 0.7227(6)       | 0.5996(3)   | 0.8933(4)        | 0.0287(3)                          | 1              |
| <b>B8</b>                | 4 <i>e</i>    | 0.5296(7)       | 0.7089(3)   | 0.8435(4)        | 0.0287(3)                          | 1              |
| <b>B9</b>                | 4 <i>e</i>    | 0.2769(7)       | 0.5388(3)   | 0.6754(4)        | 0.0287(3)                          | 1              |
| <b>B10</b>               | 4 <i>e</i>    | 0.7815(7)       | 0.7112(3)   | 0.8433(5)        | 0.0287(3)                          | 1              |
| D1                       | 4 <i>e</i>    | 0.627(1)        | 0.4253(2)   | 0.7685(6)        | 0.0489(7)                          | 1              |
| D2                       | 4 <i>e</i>    | 0.386(1)        | 0.5842(4)   | 0.5077(4)        | 0.0489(7)                          | 1              |
| D3                       | 4 <i>e</i>    | 0.536(1)        | 0.7905(3)   | 0.6291(5)        | 0.0489(7)                          | 1              |
| D4                       | 4 <i>e</i>    | 0.8853(8)       | 0.5846(4)   | 0.7232(6)        | 0.0489(7)                          | 1              |
| D5                       | 4 <i>e</i>    | 0.1177(7)       | 0.7190(4)   | 0.6428(6)        | 0.0489(7)                          | 1              |
| D6                       | 4 <i>e</i>    | 0.355(1)        | 0.5522(4)   | 0.9015(5)        | 0.0489(7)                          | 1              |
| D7                       | 4 <i>e</i>    | 0.8558(8)       | 0.5656(4)   | 0.9998(4)        | 0.0489(7)                          | 1              |
| D8                       | 4 <i>e</i>    | 0.482(1)        | 0.7689(3)   | 0.9026(6)        | 0.0489(7)                          | 1              |
| D9                       | 4 <i>e</i>    | 0.1145(9)       | 0.4820(4)   | 0.6267(5)        | 0.0489(7)                          | 1              |
| D10                      | 4 <i>e</i>    | 0.9435(8)       | 0.7683(4)   | 0.8928(6)        | 0.0489(7)                          | 1              |

**Table S2.** The refined Na<sub>2</sub><sup>11</sup>B<sub>10</sub>D<sub>10</sub> structural parameters at 295 K associated with the monoclinic space group  $P2_1/c$  (No.14) derived from NPD data.

| $Na_2B_{10}H_{10}$ |                    | T = 100        | ) K           | X            | RPD λ=0.72                         | <b>196(1) Å</b>             |
|--------------------|--------------------|----------------|---------------|--------------|------------------------------------|-----------------------------|
| a = 6.6812(3)      | Å; <i>b</i> =13.03 | 14(6) Å; $c =$ | 11.8984(4) Å; | γ=120.368(2) | °; V = 893.81(                     | 6) Å <sup>3</sup> ; $Z = 4$ |
| Atom               | Site               | X              | у             | Z            | U <sub>iso</sub> (Å <sup>2</sup> ) | Occ.                        |
| Na1                | 4 <i>e</i>         | 0.229(1)       | 0.3877(7)     | 0.4845(7)    | 0.028(1)                           | 1                           |
| Na2                | 4 <i>e</i>         | 0.201(1)       | 0.6296(8)     | 0.0064(7)    | 0.028(1)                           | 1                           |
| B1                 | 4 <i>e</i>         | 0.561(1)       | 0.5124(4)     | 0.7595(7)    | 0.008(1)                           | 1                           |
| B2                 | 4 <i>e</i>         | 0.436(1)       | 0.5961(5)     | 0.6161(5)    | 0.008(1)                           | 1                           |
| B3                 | 4 <i>e</i>         | 0.540(1)       | 0.7193(4)     | 0.6887(6)    | 0.008(1)                           | 1                           |
| <b>B4</b>          | 4 <i>e</i>         | 0.735(1)       | 0.6101(5)     | 0.7438(6)    | 0.008(1)                           | 1                           |
| B5                 | 4 <i>e</i>         | 0.2825(9)      | 0.6678(5)     | 0.6828(6)    | 0.008(1)                           | 1                           |
| <b>B6</b>          | 4 <i>e</i>         | 0.409(1)       | 0.5846(5)     | 0.8273(6)    | 0.008(1)                           | 1                           |
| B7                 | 4 <i>e</i>         | 0.714(1)       | 0.6025(5)     | 0.8919(5)    | 0.008(1)                           | 1                           |
| <b>B8</b>          | 4 <i>e</i>         | 0.519(1)       | 0.7111(5)     | 0.8388(7)    | 0.008(1)                           | 1                           |
| <b>B9</b>          | 4 <i>e</i>         | 0.271(1)       | 0.5391(5)     | 0.6724(7)    | 0.008(1)                           | 1                           |
| <b>B10</b>         | 4 <i>e</i>         | 0.774(1)       | 0.7141(5)     | 0.8401(7)    | 0.008(1)                           | 1                           |
| H1                 | 4 <i>e</i>         | 0.625(2)       | 0.4251(4)     | 0.7712(9)    | 0.009(9)                           | 1                           |
| H2                 | 4 <i>e</i>         | 0.391(2)       | 0.5812(7)     | 0.5065(5)    | 0.009(9)                           | 1                           |
| H3                 | 4 <i>e</i>         | 0.534(2)       | 0.7905(5)     | 0.6235(8)    | 0.009(9)                           | 1                           |
| H4                 | 4 <i>e</i>         | 0.888(1)       | 0.5840(7)     | 0.7265(9)    | 0.009(9)                           | 1                           |
| Н5                 | 4 <i>e</i>         | 0.110(1)       | 0.7200(6)     | 0.6340(9)    | 0.009(9)                           | 1                           |
| H6                 | 4 <i>e</i>         | 0.342(2)       | 0.5557(7)     | 0.8970(8)    | 0.009(9)                           | 1                           |
| H7                 | 4 <i>e</i>         | 0.845(1)       | 0.5696(7)     | 1.0000(5)    | 0.009(9)                           | 1                           |
| H8                 | 4 <i>e</i>         | 0.468(2)       | 0.7734(6)     | 0.8946(8)    | 0.009(9)                           | 1                           |
| H9                 | 4 <i>e</i>         | 0.110(1)       | 0.4810(7)     | 0.6235(9)    | 0.009(9)                           | 1                           |
| H10                | 4 <i>e</i>         | 0.936(1)       | 0.7718(7)     | 0.8900(9)    | 0.009(9)                           | 1                           |

**Table S3.** The refined Na<sub>2</sub>B<sub>10</sub>H<sub>10</sub> structural parameters at 100 K associated with the monoclinic space group  $P2_1/c$  (No. 14) derived from XRPD data (R<sub>p</sub>=0.0811, R<sub>wp</sub>=0.0732,  $\chi^2$ =0.379).

| $Na_2B_{10}H_{10}$ |               | Τ=          | 300 K             | X            | RPD                                | λ=0.7296(1) Å           |
|--------------------|---------------|-------------|-------------------|--------------|------------------------------------|-------------------------|
| a = 6.7333(3)      | ) Å; b= 13.10 | 637(6) Å; a | r = 11.9761(4) Å; | γ=120.591(2) | °; $V = 9$                         | 913.76(7) $Å^3$ ; Z = 4 |
| Atom               | Site          | x           | у                 | Ζ.           | U <sub>iso</sub> (Å <sup>2</sup> ) | ) Occ.                  |
| Na1                | 4 <i>e</i>    | 0.234(1)    | 0.3896(7)         | 0.4803(7)    | 0.035(1)                           | ) 1                     |
| Na2                | 4 <i>e</i>    | 0.205(1)    | 0.6344(7)         | 0.0060(8)    | 0.035(1)                           | ) 1                     |
| B1                 | 4 <i>e</i>    | 0.562(1)    | 0.5134(4)         | 0.7615(7)    | 0.006(1)                           | ) 1                     |
| B2                 | 4 <i>e</i>    | 0.436(1)    | 0.5962(5)         | 0.6173(6)    | 0.006(1)                           | ) 1                     |
| B3                 | 4 <i>e</i>    | 0.540(1)    | 0.7179(5)         | 0.6892(7)    | 0.006(1)                           | ) 1                     |
| <b>B4</b>          | 4 <i>e</i>    | 0.735(1)    | 0.6101(6)         | 0.7454(7)    | 0.006(1)                           | ) 1                     |
| B5                 | 4 <i>e</i>    | 0.284(1)    | 0.6671(5)         | 0.6823(7)    | 0.006(1)                           | ) 1                     |
| <b>B6</b>          | 4 <i>e</i>    | 0.409(1)    | 0.5851(5)         | 0.8264(7)    | 0.006(1)                           | ) 1                     |
| B7                 | 4 <i>e</i>    | 0.712(1)    | 0.6028(5)         | 0.8920(6)    | 0.006(1)                           | ) 1                     |
| <b>B8</b>          | 4 <i>e</i>    | 0.518(1)    | 0.7102(5)         | 0.8378(7)    | 0.006(1)                           | ) 1                     |
| <b>B9</b>          | 4 <i>e</i>    | 0.274(1)    | 0.5395(5)         | 0.6724(7)    | 0.006(1)                           | ) 1                     |
| <b>B10</b>         | 4 <i>e</i>    | 0.774(1)    | 0.7131(5)         | 0.8411(7)    | 0.006(1)                           | ) 1                     |
| H1                 | 4 <i>e</i>    | 0.626(2)    | 0.4271(4)         | 0.773(1)     | 0.011(9)                           | ) 1                     |
| H2                 | 4 <i>e</i>    | 0.394(2)    | 0.5811(8)         | 0.5086(6)    | 0.011(9)                           | ) 1                     |
| H3                 | 4 <i>e</i>    | 0.535(2)    | 0.7886(6)         | 0.6248(8)    | 0.011(9)                           | ) 1                     |
| H4                 | 4 <i>e</i>    | 0.888(1)    | 0.5843(7)         | 0.729(1)     | 0.011(9)                           | ) 1                     |
| H5                 | 4 <i>e</i>    | 0.112(1)    | 0.7185(7)         | 0.6330(9)    | 0.011(9)                           | ) 1                     |
| H6                 | 4 <i>e</i>    | 0.342(2)    | 0.5567(7)         | 0.8954(8)    | 0.011(9)                           | ) 1                     |
| H7                 | 4 <i>e</i>    | 0.843(1)    | 0.5707(7)         | 1.0001(6)    | 0.011(9)                           | ) 1                     |
| H8                 | 4 <i>e</i>    | 0.467(2)    | 0.7721(6)         | 0.8927(9)    | 0.011(9)                           | ) 1                     |
| H9                 | 4 <i>e</i>    | 0.114(1)    | 0.4818(7)         | 0.623(1)     | 0.011(9)                           | ) 1                     |
| H10                | 4 <i>e</i>    | 0.934(1)    | 0.7707(7)         | 0.891(1)     | 0.011(9)                           | ) 1                     |

**Table S4.** The refined Na<sub>2</sub>B<sub>10</sub>H<sub>10</sub> structural parameters at 300 K associated with the monoclinic space group  $P2_1/c$  (No. 14) derived from XRPD data (R<sub>p</sub>=0.0836, R<sub>wp</sub>=0.0715,  $\chi^2$ =0.332).

| $Na_2^{11}B_{10}D_{10}$ |                  | T = 410                    | 410 K NPD Cu(311)/λ=1.5398(2) |           |                             |         |
|-------------------------|------------------|----------------------------|-------------------------------|-----------|-----------------------------|---------|
| a = 9.8397(5)           | ) Å; $V = 952.7$ | $7(1) \text{ Å}^3;  Z = 4$ | Ļ                             |           |                             |         |
| Atom                    | Site             | x                          | у                             | Z.        | $U_{iso}$ (Å <sup>2</sup> ) | Occ.    |
| B1                      | 24 <i>e</i>      | 0.1864(4)                  | 0                             | 0         | 0.119(6)                    | 1/3     |
| B2                      | 96k              | 0.0634(4)                  | 0.0625(4)                     | 0.1279(7) | 0.135(6)                    | 1/3     |
| D1                      | 24 <i>e</i>      | 0.3058(4)                  | 0                             | 0         | 0.35(1)                     | 1/3     |
| D2                      | 96k              | 0.1103(4)                  | 0.1105(4)                     | 0.226(2)  | 0.35(1)                     | 1/3     |
| Na1                     | 8 <i>c</i>       | 1/4                        | 1/4                           | 1/4       | 0.09                        | 0.54(2) |
| Na2                     | 4 <i>b</i>       | 1/2                        | 0                             | 0         | 0.09                        | 0.11(3) |
| Na3                     | 24 <i>d</i>      | 1/4                        | 1/4                           | 0         | 0.19                        | 0.10(1) |

**Table S5.** The refined Na<sub>2</sub><sup>11</sup>B<sub>10</sub>D<sub>10</sub> structural parameters at 410 K associated with the cubic space group *Fm*-3*m* (No. 225) derived from NPD data ( $R_{wp}$ =0.0491,  $R_p$ =0.0412,  $\chi^2$ =1.403).

**Table S6.** The refined Na<sub>2</sub>B<sub>10</sub>H<sub>10</sub> structural parameters at 410 K associated with the cubic space group *Fm*-3*m* (No. 225) derived from synchrotron XRPD data ( $R_p$ =0.136,  $R_{wp}$ =0.0924,  $\chi^2$ =0.482).

| $Na_2B_{10}H_{10}$                                        |             | $\mathbf{T} = 410 \ \mathbf{K}$ |           |           | RPD λ=0.729                        | 96(1) Å  |  |
|-----------------------------------------------------------|-------------|---------------------------------|-----------|-----------|------------------------------------|----------|--|
| a = 9.8517(6) Å; $V = 956.16(9)$ Å <sup>3</sup> ; $Z = 4$ |             |                                 |           |           |                                    |          |  |
| Atom                                                      | Site        | x                               | у         | Z.        | U <sub>iso</sub> (Å <sup>2</sup> ) | Occ.     |  |
| <b>B1</b>                                                 | 24 <i>e</i> | 0.1852(6)                       | 0         | 0         | 0.05                               | 1/3      |  |
| B2                                                        | 96k         | 0.0632(3)                       | 0.0632(3) | 0.1284(4) | 0.23                               | 1/3      |  |
| Na1                                                       | 8 <i>c</i>  | 1⁄4                             | 1⁄4       | 1⁄4       | 0.27                               | 0.742(5) |  |
| Na2                                                       | 4 <i>b</i>  | 1/2                             | 0         | 0         | 0.60                               | 0.06(1)  |  |
| Na3                                                       | 24 <i>d</i> | 1⁄4                             | 1⁄4       | 0         | 0.56                               | 0.056(8) |  |

N.B.: H atom positions were ignored during the refinement.

**Table S7.** List of phonon symmetries and the corresponding phonon energies [Symmetry, Energy (meV), Energy (cm<sup>-1</sup>)] at the gamma point from the DFT-optimized  $Na_2^{11}B_{10}H_{10}$  structure at 0 K. All modes are nondegenerate. Modes below 200 cm<sup>-1</sup> possess cation and whole-anion translational and/or librational character. (N.B.: Infrared-active modes = Au, Bu and Raman-active modes = Ag, Bg.)

| 1                                |                                  |                 |                  |                   |
|----------------------------------|----------------------------------|-----------------|------------------|-------------------|
| <u>Sym E(mV) E(cm⁻¹)</u>         | Bg 59.1 476.70                   | Au 87.5 706.06  | Au 109.0 879.61  | Ag 126.5 1020.51  |
| Au 3.6 29.21                     | Au 59.1 476.99                   | Bu 88.1 710.76  | Bg 109.2 880.70  | Bg 126.6 1021.72  |
| Ag 5.2 42.00                     | Bg 59.4 478.91                   | Bg 88.3 712.07  | Ag 109.2 880.78  | Ag 127.0 1024.68  |
| Ag 7.6 61.01                     | Bu 59.4 478.99                   | Ag 88.3 712.71  | Au 110.2 888.77  | Au 127.0 1024.71  |
| Bg 7.7 62.39                     | Ag 59.5 480.25                   | Au 90.5 729.71  | Bu 110.4 890.48  | Bu 127.1 1025.02  |
| Au 8.2 66.13                     | Bu 65.9 531.88                   | Bu 90.5 729.78  | Au 110.7 892.84  | Bg 127.2 1025.84  |
| Bu 8.5 68.59                     | Bu 66.0 532.42                   | Ag 91.1 734.98  | Bu 110.7 892.96  | Bu 133.5 1076.79  |
| Ag 8.7 69.91                     | Ag 66.0 532.45                   | Bg 91.1 735.09  | Bg 110.7 893.11  | Au 133.5 1077.00  |
| Au 8.7 70.28                     | Au 66.1 533.08                   | Au 91.5 738.35  | Ag 110.7 893.34  | Ag 133.6 1077.75  |
| Bg 8.9 72.10                     | Bg 66.2 533.71                   | Bu 91.6 738.93  | Au 110.9 894.63  | Bg 133.6 1077.77  |
| Au 9.8 78.67                     | Au 66.3 534.75                   | Ag 91.8 740.59  | Bu 110.9 895.01  | Bu 306.6 2473.28  |
| Bu 9.8 79.14                     | Bg 66.6 536.97                   | Bg 91.9 741.48  | Bg 111.0 895.43  | Au 306.6 2473.49  |
| Ag 10.5 85.03                    | Ag 66.7 537.82                   | Bu 92.2 744.06  | Ag 111.0 895.59  | Bg 307.9 2483.87  |
| Bg 10.6 85.46                    | Au 71.2 574.10                   | Au 92.3 744.56  | Bg 111.1 896.17  | Ag 307.9 2484.27  |
| Bu 10.7 86.25                    | Bg 71.7 578.38                   | Bg 92.7 747.85  | Ag 111.2 897.08  | Au 308.4 2487.72  |
| Ag 10.8 87.12                    | Bu 71.7 578.81                   | Ag 92.8 748.83  | Bu 112.2 904.88  | Bu 308.4 2487.77  |
| Au 10.9 88.26                    | Ag 72.1 581.85                   | Au 93.5 754.61  | Au 112.4 906.76  | Ag 308.5 2488.85  |
| Bg 11.9 95.90                    | Au 72.5 584.99                   | Bg 94.0 758.11  | Bg 112.4 906.80  | Bg 308.7 2490.15  |
| Bg 12.3 99.36                    | Bu 72.9 588.22                   | Bu 94.2 759.69  | Ag 112.6 908.02  | Bu 309.5 2496.94  |
| Ag 12.4 99.76                    | Ag 72.9 588.51                   | Ag 94.5 762.55  | Au 112.8 909.77  | Au 310.0 2500.58  |
| Au 12.6 101.59                   | Bg 73.3 591.09                   | Bu 96.4 777.66  | Bu 112.8 910.41  | Ag 310.5 2505.28  |
| Ag 13.2 106.63                   | Bu 75.6 609.77                   | Bg 96.4 777.76  | Ag 112.9 910.69  | Bg 310.6 2505.98  |
| Bu 13.3 107.24                   | Bg 75.6 610.20                   | Ag 96.7 780.25  | Bg 113.1 912.79  | Bu 313.3 2527.86  |
| Bg 14.4 115.98                   | Au 75.7 610.78                   | Au 96.9 781.52  | Au 114.3 921.81  | Ag 313.4 2528.49  |
| Ag 14.5 117.15                   | Ag 75.9 612.43                   | Ag 97.5 786.66  | Bu 114.4 922.60  | Au 313.8 2531.92  |
| Bu 14.7 118.83                   | Bu 76.6 618.21                   | Au 97.6 787.60  | Bg 114.4 922.87  | Bg 314.0 2533.59  |
| Bu 15.4 123.95                   | Bg 76.8 619.85                   | Bu 97.7 788.25  | Ag 114.5 923.47  | Bu 314.1 2534.20  |
| Bg 16.0 129.30                   | Au 76.9 620.08                   | Bg 97.8 788.68  | Bu 114.8 926.26  | Au 314.2 2534.77  |
| Bu 16.3 131.65                   | Ag 76.9 620.73                   | Au 98.9 797.85  | Ag 114.8 926.44  | Ag 314.2 2534.92  |
| Ag 16.4 132.04                   | Bu 77.0 621.46                   | Bg 99.1 799.13  | Au 114.9 926.75  | Bg 314.3 2535.92  |
| Bg 16.4 132.51                   | Au 77.2 622.55                   | Ag 99.1 799.24  | Bg 114.9 926.79  | Au 315.0 2541.01  |
| Au 17.1 137.96                   | Bg 77.3 623.55                   | Bu 99.1 799.66  | Bu 115.9 934.71  | Bu 315.0 2541.60  |
| Bg 17.8 143.75                   | Ag 77.4 624.70                   | Au 102.7 828.73 | Au 115.9 935.32  | Bg 315.1 2542.33  |
| Bu 18.0 145.36                   | Bu 81 9 660 86                   | Bu 102 9 830 22 | Ag 116 0 935 43  | Ag 315 1 2542 47  |
| Au 18 3 147 34                   | Au 82 2 662 84                   | Bg 103 1 831 38 | Bg 116.0 935.45  | Bu 315 3 2543 55  |
| Ag 18.6 150.21                   | Bg 82 3 663 83                   | Ag 103 1 831 54 | Au 119 3 962 12  | Au 315 5 2545 20  |
| Au 19.1 154.26                   | Ag 82 3 663 92                   | Bu 103 7 836 82 | Ag 119 3 962 14  | Ag 315 6 2545 99  |
| Rg 19/1 156 35                   | Bu 82 / 66/ /6                   | Bg 103 9 837 87 | Bu 119 3 962 80  |                   |
| Bg 20 5 165 54                   | Δσ 82 5 665 74                   | Δσ 103 9 838 04 | Bg 119 4 963 29  | Rg 315 8 2547.02  |
| Bu 21.1 169.95                   |                                  |                 | Διι 119 8 966 36 | Bu 316 3 2551 //7 |
| Δα 21.1 105.55                   | Bg 82 7 667 51                   | Δα 106.3 857.21 | Ag 119.8 966.48  | Δσ 216 / 2552 22  |
| Ag 21.3 175.33                   | Au 92 9 669 15                   | Ag 100.3 837.21 | Ag 119.8 900.48  | Ag 310.4 2332.33  |
| Au 21.8 175.52                   | Ru 82.0 669.57                   | Ru 106 5 859 13 | Bu 119 9 967 41  | Au 216 7 2555 12  |
| Au 22.0 $177.15$                 | Ag 82.4 672.61                   | Bu 100.3 839.13 | Bu 119.9 907.41  | Au 310.7 2333.12  |
| Ag 23.4 100.41                   | Ag 03.4 072.01                   | Bg 100.7 800.92 | Bu 120.2 909.04  | Ag 217 2 250.14   |
| Dg 25.0 190.10                   | Dg 03.3 073.24                   | DU 100.8 801.84 | bg 120.3 970.44  | Ag 517.5 2559.40  |
| DU 24.4 190.00                   | DU 04.1 070.03                   | Au 100.9 802.47 | Ag 120.4 971.55  | Dg 517.5 2559.05  |
|                                  | Au 04.5 001.41                   | Bg 107.8 809.88 | Au 120.5 971.85  | AU 516.7 2571.40  |
| AU 37.3 401.92                   | Ag 04.5 082.10                   | AR TOLO 020 00  | BU 125.8 1014.93 | BU 310.8 25/1.95  |
| Dg 37.0 404.88<br>Ag 57.7 AGE 40 | DE 04.1 003.21                   | AU 107.0 070.00 | AU 123.9 1010.00 | DR 210 2 2572.01  |
| Mg 31.1 403.40                   | AU 00.0 098.98<br>Da 96 9 700 60 | DE TOOT 0/2.02  | Ag 120.0 1010.20 | HR 273'3 7212'2A  |
| Au 30./ 4/3.54                   | Bg 80.8 /UU.02                   | BU 100.2 872.94 | DE 120.1 1010.98 |                   |
| Ag 58.9 4/5.33                   | BU 86.9 /00.94                   | Ag 108.3 873.99 | AU 126.4 1019.93 |                   |
| ви 59.1 476.45                   | Ag 87.0 701.73                   | RN 108'8 8\8'21 | BU 126.5 1020.21 |                   |

**Table S8.** List of phonon symmetries and the corresponding phonon energies [Symmetry, Energy (meV), Energy (cm<sup>-1</sup>)] at the gamma point from the DFT-optimized  $Na_2^{11}B_{10}D_{10}$  structure at 0 K. All modes are nondegenerate. Modes below 200 cm<sup>-1</sup> possess cation and whole-anion translational and/or librational character. (N.B.: Infrared-active modes = Au, Bu and Raman-active modes = Ag, Bg.)

| <u>Sym E(mV) E(cm<sup>-1</sup>)</u> | Ag 53.5 431.26 | Bu 72.8 587.28 | Ag 88.7 715.35  | Ag 113.2 913.23  |
|-------------------------------------|----------------|----------------|-----------------|------------------|
| Au 3.5 28.25                        | Au 53.6 432.76 | Au 72.8 587.28 | Au 88.7 715.54  | Bg 113.3 914.09  |
| Ag 5.1 40.76                        | Ag 53.9 435.19 | Bg 72.9 587.77 | Bg 88.7 715.63  | Bu 119.8 966.44  |
| Ag 7.2 58.49                        | Bu 54.0 435.31 | Ag 72.9 588.06 | Bu 89.8 724.80  | Bg 119.9 967.21  |
| Bg 7.5 60.56                        | Bg 54.0 435.62 | Bu 74.9 604.50 | Ag 89.8 724.82  | Au 119.9 967.44  |
| Au 7.9 63.86                        | Au 58.1 468.74 | Bg 75.0 604.99 | Au 89.9 724.98  | Ag 120.0 967.71  |
| Bu 8.1 64.97                        | Bu 58.2 469.36 | Ag 75.1 605.54 | Bg 89.9 725.53  | Bu 121.9 983.61  |
| Au 8.3 66.67                        | Bu 58.4 471.10 | Bu 75.1 605.81 | Bu 90.7 731.88  | Au 121.9 983.71  |
| Ag 8.4 67.65                        | Ag 58.5 471.79 | Au 75.1 606.04 | Ag 90.7 732.12  | Ag 122.0 984.40  |
| Bg 8.6 69.18                        | Au 58.6 472.84 | Au 75.1 606.17 | Au 90.8 732.39  | Bg 122.1 984.87  |
| Au 9.2 74.50                        | Bg 58.6 473.10 | Bg 75.2 606.67 | Bg 90.8 732.77  | Bu 226.8 1829.78 |
| Bu 9.6 77.07                        | Bg 59.1 476.78 | Ag 75.2 606.82 | Ag 91.7 740.03  | Au 226.8 1829.99 |
| Ag 10.1 81.13                       | Ag 59.4 479.41 | Au 76.2 614.76 | Bg 91.7 740.11  | Bg 227.7 1836.57 |
| Bg 10.3 82.75                       | Au 60.1 485.08 | Bu 76.4 616.75 | Bu 91.8 740.40  | Ag 227.7 1836.91 |
| Bu 10.3 83.36                       | Bg 60.2 486.03 | Bg 76.5 616.87 | Au 91.8 740.44  | Bu 228.0 1839.15 |
| Ag 10.4 83.63                       | Bu 60.4 487.12 | Ag 76.8 619.59 | Bg 91.9 741.63  | Au 228.0 1839.28 |
| Au 10.9 87.76                       | Au 60.5 488.31 | Bu 78.1 629.96 | Bu 91.9 741.63  | Ag 228.2 1840.84 |
| Bg 11.5 92.86                       | Bu 60.7 490.06 | Bg 78.1 630.07 | Au 91.9 741.65  | Bg 228.2 1840.97 |
| Au 12.0 96.67                       | Ag 60.8 490.82 | Au 78.2 631.17 | Ag 92.0 741.90  | Bu 229.1 1848.58 |
| Bg 12.2 98.38                       | Ag 61.0 492.52 | Ag 78.3 631.37 | Bg 94.2 759.68  | Au 229.4 1850.99 |
| Ag 12.2 98.67                       | Bg 61.5 496.47 | Bg 82.1 662.22 | Au 94.2 759.83  | Ag 229.7 1853.36 |
| Bu 12.7 102.69                      | Bu 63.9 515.90 | Ag 82.1 662.25 | Bu 94.2 760.13  | Bg 229.8 1853.64 |
| Ag 12.9 104.47                      | Au 64.3 518.81 | Bu 82.1 662.26 | Ag 94.6 762.81  | Bu 231.5 1867.87 |
| Bg 14.0 113.04                      | Au 64.8 522.66 | Au 82.1 662.31 | Bu 96.4 777.88  | Ag 231.6 1868.69 |
| Ag 14.4 116.23                      | Ag 64.8 523.17 | Bu 82.6 666.46 | Au 96.4 778.00  | Au 232.0 1872.06 |
| Bu 14.6 117.79                      | Bg 65.3 526.64 | Ag 82.7 667.28 | Bg 96.5 778.36  | Bg 232.1 1872.10 |
| Bu 14.9 120.52                      | Bu 65.4 527.33 | Au 82.7 667.36 | Ag 96.5 778.42  | Au 232.2 1873.59 |
| Bu 15.5 124.95                      | Bg 65.5 528.36 | Bg 82.7 667.55 | Bu 97.3 785.31  | Ag 232.4 1874.54 |
| Bg 15.5 125.35                      | Ag 65.5 528.45 | Bu 84.5 681.50 | Au 97.4 785.47  | Bu 232.4 1874.87 |
| Ag 15.8 127.12                      | Au 66.4 535.28 | Au 84.6 682.76 | Ag 97.4 785.82  | Bg 232.5 1875.53 |
| Bg 15.8 127.56                      | Bu 66.4 535.67 | Bg 84.6 682.88 | Bg 97.4 786.12  | Bu 233.0 1879.49 |
| Au 16.8 135.80                      | Au 66.4 535.73 | Ag 84.7 683.03 | Au 106.6 859.74 | Bg 233.0 1879.66 |
| Bu 17.3 139.36                      | Ag 66.6 537.45 | Au 85.3 687.81 | Bu 106.6 859.91 | Ag 233.1 1880.49 |
| Bg 17.5 141.11                      | Bg 66.6 537.60 | Bu 85.3 688.39 | Ag 106.6 860.31 | Au 233.1 1880.51 |
| Au 17.5 141.52                      | Bu 66.8 538.64 | Ag 85.4 688.71 | Bg 106.7 860.61 | Bu 233.5 1883.77 |
| Ag 17.8 143.52                      | Bg 66.9 539.92 | Bg 85.4 688.83 | Bu 106.7 860.66 | Ag 233.6 1884.29 |
| Au 18.4 148.76                      | Bu 67.2 541.81 | Au 86.6 698.82 | Au 106.7 860.71 | Bg 233.7 1885.36 |
| Bg 18.5 149.46                      | Ag 67.2 542.37 | Bu 86.7 699.25 | Ag 106.7 861.09 | Au 233.8 1885.81 |
| Bg 19.7 158.77                      | Bg 67.3 543.29 | Bg 86.8 699.90 | Bg 106.8 861.28 | Bu 233.9 1887.35 |
| Ag 20.5 165.16                      | Ag 67.5 544.53 | Ag 86.8 700.44 | Au 111.1 896.05 | Au 234.0 1887.90 |
| Bu 20.7 166.84                      | Au 67.5 544.71 | Au 87.0 702.04 | Bg 111.1 896.18 | Bg 234.9 1894.67 |
| Au 21.1 169.83                      | Bu 68.8 554.74 | Bu 87.1 703.07 | Bu 111.1 896.38 | Ag 234.9 1894.81 |
| Au 21.8 175.61                      | Bg 68.8 554.83 | Bg 87.3 704.55 | Ag 111.1 896.51 | Au 235.1 1896.44 |
| Bg 22.6 182.05                      | Ag 68.8 555.06 | Ag 87.3 704.59 | Bu 111.3 897.87 | Ag 235.3 1898.52 |
| Ag 22.7 183.42                      | Au 68.9 555.50 | Au 87.5 705.67 | Bg 111.3 897.91 | Bu 235.4 1899.26 |
| Bu 23.7 191.06                      | Au 69.8 562.81 | Bu 87.6 706.34 | Au 111.3 898.10 | Bg 235.8 1902.18 |
| Bu 51.8 417.53                      | Bu 69.8 563.28 | Ag 87.6 706.81 | Ag 111.3 898.26 | Au 236.6 1908.87 |
| Au 52.1 420.72                      | Ag 69.8 563.44 | Bg 87.7 707.76 | Au 112.6 908.76 | Bu 236.6 1909.06 |
| Bg 52.7 425.46                      | Bg 69.9 563.68 | Au 88.0 709.55 | Ag 112.7 909.60 | Bg 236.7 1909.80 |
| Ag 52.8 425.61                      | Au 71.1 573.56 | Ag 88.0 710.26 | Bu 112.8 909.97 | Ag 236.9 1911.04 |
| Au 53.2 428.82                      | Ag 71.1 573.68 | Bg 88.1 710.69 | Bg 112.8 910.27 |                  |
| Bu 53.4 430.70                      | Bg 71.1 573.75 | Bu 88.1 710.81 | Bu 113.1 912.29 |                  |
| Bg 53.5 431.24                      | Bu 71.2 574.52 | Bu 88.6 715.14 | Au 113.2 913.09 |                  |