Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2015

> Comparison of inclusion properties between *p-tert*-butylcalix[4]arene and *p-tert*-butylthiacalix[4]arene towards primary alcohols in crystals Naoya Morohashi,* Kazuki Nanbu, Ayano Tonosaki, Shintaro Noji, Tetsutaro Hattori* Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Supporting Information

Contents:

I.	Powder X-ray diffraction (PXRD) studies	S2
II.	Single crystal X-ray diffraction (XRD) studies for	
	inclusion crystals of compound 1	S4
III.	Single crystal X-ray diffraction (XRD) studies for	
	inclusion crystals of compound 2	S7
IV.	Reference	S9

I. Powder X-ray diffraction (PXRD) studies

Figure S1. PXRD patterns of the inclusion crystals of compound **1** with PentOH (a) and HexOH (b) obtained by crystallization.

Figure S2. PXRD patterns of the inclusion crystals of compound **1** with MeOH (a), EtOH (b), PrOH (c) and BuOH (d) obtained by the suspension method, and a simulation from XRD data of **1** ·EtOH measured at 100 K (e).

Figure S3. PXRD patterns of the inclusion crystals of compound 1 with PentOH (a), HexOH (b) and HeptOH (c) obtained by the suspension method, and a simulation from XRD data of 1_2 ·PentOH measured at 100 K (d).

Figure S4. PXRD patterns of a crystalline powder of compound **2** (a) and its inclusion crystals with MeOH (b), EtOH (c) and PrOH (d) obtained by crystallization and with EtOH obtained by the suspension method (e), and a simulation from XRD data of **2** EtOH measured at 223 K (f).

II. Single crystal X-ray diffraction (XRD) studies for inclusion crystals of compound 1

Figure S5. X-ray structure of 1·MeOH: Side view (a) and top view (b). Hydrogen atoms are omitted for clarity.

Figure S6. X-ray structure of **1**·EtOH: Side view (a) and top view (b). Hydrogen atoms are omitted for clarity.

Figure S7. X-ray structure of **1**·PrOH: Side view (a) and top view (b). Hydrogen atoms are omitted for clarity.

Figure S8. X-ray structure of **1**·PentOH: Side view (a) and top view (b). Hydrogen atoms are omitted for clarity.

Figure S9. X-ray structure of 1_2 ·PentOH: Side view (a) and top view (b). Hydrogen atoms are omitted for clarity.

III. Single crystal X-ray diffraction (XRD) studies for inclusion crystals of compound 2

The structures of inclusion crystals $2 \cdot \text{MeOH}$, $2 \cdot \text{EtOH}$ and $2 \cdot \text{PrOH}$ reported in a preliminary communication¹ were reanalyzed under the restraint of disordered *tert*-butyl groups and guest molecules. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition number CCDC 1050720–1050722.

Data for 2·MeOH. C₄₁H₅₂O₅S₄, fw = 753.07, tetragonal, *P*4/nmm, *a* = 15.7827(7) Å, *b* = 15.7827(7) Å, *c* = 8.2365(7) Å, *V* = 2051.7(2) Å³, *Z* = 2, *T* = 223(2) K, 11188 reflections measured, 1332 independent reflections, 1190 reflections were observed (*I* > $2\sigma(I)$), *R*₁ = 0.0955, *wR*₂ = 0.2366 (observed), *R*₁ = 0.1011, *wR*₂ = 0.2559 (all data).

Data for 2·EtOH. C₄₂H₅₄O₅S₄, fw = 767.09, tetragonal, *P*4/nmm, *a* = 15.8115(11) Å, *b* = 15.8115(11) Å, *c* = 8.2875(12) Å, *V* = 2071.9(4) Å³, *Z* = 2, *T* = 223(2) K, 11205 reflections measured, 1341 independent reflections, 1107 reflections were observed ($I > 2\sigma(I)$), $R_1 = 0.0864$, $wR_2 = 0.2301$ (observed), $R_1 = 0.0962$, $wR_2 = 0.2557$ (all data).

Data for 2·PrOH. C₄₃H₅₆O₅S₄, fw = 781.12, tetragonal, *P*4/nmm, *a* = 15.7986(9) Å, *b* = 15.7986(9) Å, *c* = 8.5474(10) Å, *V* = 2133.4(3) Å³, *Z* = 2, *T* = 223(2) K, 11373 reflections measured, 1378 independent reflections, 1174 reflections were observed ($I > 2\sigma(I)$), $R_1 = 0.0980$, $wR_2 = 0.2420$ (observed), $R_1 = 0.1063$, $wR_2 = 0.2630$ (all data).

Figure S10. X-ray structures of **2**·MeOH (a), **2**·EtOH (b) and **2**·PrOH (c), showing partial packing structures along the *c*-axis. Hydrogen atoms and disordered atoms are omitted for clarity. Green dotted lines represent intermolecular hydrogen bonds; the O···O distances are 3.480 Å (a), 3.122 Å (b) and 2.688 Å (c), respectively. A CH– π interaction is observed between the terminal methyl group of an alcohol molecule and the benzene rings of the host molecule including the alcohol molecule in its cavity; the C···Ar distances are 3.842 Å (a), 3.685 Å (b) and 3.651 Å (c), respectively.

IV. Reference

 N. Morohashi, S. Noji, H. Nakayama, Y. Kudo, S. Tanaka, C. Kabuto and T. Hattori, Org. Lett., 2011, 13, 3292.