<Electronic Supplementary Information>

Interfacial effects of crystal surface through free quinolinyl groups on

crystal organization and catalysis

Byung Joo Kim, Haeri Lee, Tae Hwan Noh and Ok-Sang Jung*

Department of Chemistry, Pusan National University, Pusan 609-735, Korea

	[CuCl ₂ L] ₂	[CuBr ₂ L] ₂	[HgCl ₂ L] ₂	$[HgBr_2L]_2$
Formula	$1/2\;C_{72}H_{42}Cl_4Cu_2N_6O_{12}$	$1/2 \ C_{72} H_{42} Br_4 C u_2 N_6 O_{12}$	$1/2 \ C_{72}H_{42}Cl_4Hg_2N_6O_{12}$	$1/2 \ C_{72} H_{42} Br_4 Hg_2 N_6 O_{12}$
$M_{ m w}$	726.00	814.92	863.05	951.97
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Стса	Стса	Cmca	Cmca
a [Å]	26.648(3)	26.8621(2)	26.7895(7)	26.8929(9)
<i>b</i> [Å]	14.3871(1)	14.5732(8)	14.5479(4)	14.6597(4)
<i>c</i> [Å]	15.1191(1)	15.1408(7)	15.1124(5)	15.0879(4)
V[Å ³]	5796.6(8)	5927.1(6)	5889.8(3)	5948.3(3)
Ζ	8	8	8	8
$\rho [\text{g cm}^{-3}]$	1.664	1.826	1.947	2.126
$\mu \text{ [mm^{-1}]}$	0.996	3.491	5.465	7.919
F(000)	2952	3240	3360	3648
Index ranges	-32≤h≤32 -17≤k≤17 -18≤l≤18	-33≤h≤32 -17≤k≤17 -18≤l≤18	-33≤h≤33 -18≤k≤18 -18≤l≤18	-33≤h≤33 -18≤k≤17 -18≤l≤18
Completeness	$100.0\% (\theta = 25.99^{\circ})$	$100.0\% (\theta = 25.99^{\circ})$	$100.0\% (\theta = 26.49^{\circ})$	$100.0\% (\theta = 26.50^{\circ})$
$R_{\rm int}$	0.1597	0.1261	0.0531	0.0981
Goodness-of-fit	2.242	2.353	2.433	1.986
$R_1 [I > 2\sigma(I)]^a$	0.2272	0.2047	0.1679	0.1384
wR_2 (all data) ^b	0.5743	0.5770	0.5272	0.4686

Table S1 Crystal refinement parameters for $[CuCl_2L]_2$, $[CuBr_2L]_2$, $[HgCl_2L]_2$, and $[HgBr_2L]_2$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR_{2} = (\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}])^{1/2}$

Table S2 Selected bond lengths and [Å] and angles [°] for $[CuCl_2L]_2$, $[CuBr_2L]_2$, $[HgCl_2L]_2$,and $[HgBr_2L]_2$

$[CuCl_2L]_2$		$[CuBr_2L]_2$		
Cu(1)–N(1)	2.120(1)	Cu(1)–N(1)	2.117(2)	
Cu(1)-N(1)#1	2.120(1)	Cu(1)–N(1) ^{#3}	2.117(2)	
Cu(1)–Cl(1)	2.224(5)	Cu(1)–Br(1)	2.381(3)	
Cu(1)–Cl(1) ^{#1}	2.224(5)	Cu(1)-Br(1)#3	2.381(3)	
Cu(1)···Cu(1) ^{#2}	17.9791(2)	Cu(1)…Cu(1) ^{#4}	17.9807(1)	
N(1)-Cu(1)-N(1) ^{#1}	151.5(7)	N(1)-Cu(1)-N(1)#3	155.3(1)	
Cl(1)-Cu(1)-Cl(1) ^{#1}	151.7(3)	Br(1)–Cu(1)–Br(1) ^{#3}	147.2(2)	
N(1)-Cu(1)-Cl(1)	95.0(3)	N(1)-Cu(1)-Br(1)	97.0(4)	
N(1)-Cu(1)-Cl(1) ^{#1}	91.9(4)	$N(1)^{#3}$ -Cu(1)-Br(1)	89.9(5)	
$N(1)^{\#1}$ -Cu(1)-Cl(1) ^{#1}	95.0(4)	N(1)-Cu(1)-Br(1)#3	89.9(5)	
[HgCl ₂ L] ₂		[HgBr ₂ L] ₂		
Hg(1)–N(1)	2.529(1)	Hg(1)–N(1)	2.531(1)	
$Hg(1)-N(1)^{\#5}$	2.529(1)	$Hg(1)-N(1)^{\#7}$	2.531(1)	
Hg(1)-Cl(1)	2.368(6)	Hg(1)-Br(1)	2.481(3)	
$Hg(1)-Cl(1)^{\#5}$	2.368(6)	$Hg(1)-Br(1)^{\#7}$	2.481(3)	
$\operatorname{Hg}(1)\cdots\operatorname{Hg}(1)^{\#6}$	19.3120(5)	Hg(1)…Hg(1) ^{#8}	19.3374(6)	
N(1)-Hg(1)-N(1) ^{#5}	128.7(7)	N(1)-Hg(1)-N(1) ^{#7}	125.4(6)	
Cl(1)-Hg (1)-Cl(1)#5	167.9(3)	Br(1)-Hg(1)-Br(1) ^{#7}	166.26(2)	
N(1)-Hg(1)-Cl(1) ^{#5}	90.8(3)	N(1)–Hg(1)–Br(1)	94.5(3)	
$N(1)^{\#5}-Hg(1)-Cl(1)$	90.8(3)	$N(1)^{\#7}-Hg(1)-Br(1)$	91.8(3)	
N(1)#5-Hg(1)-Cl(1)#5	94.5(3)	$N(1)-Hg(1)-Br(1)^{\#7}$	91.8(3)	

^{#1}x,-y,-z+2, ^{#2}2-x,-y,2-z, ^{#3}x,-y,-z+1, ^{#4}2-x,-y,1-z, ^{#5}x,-y+2,-z+1, ^{#6}2-x,2-y,1-z, ^{#7}x,-y+1,-z+2, ^{#8}2-x,1-y,2-z

Fig. S1 IR spectra of L (a), $[CuCl_2L]_2$ (b), $[CuBr_2L]_2$ (c), $[HgCl_2L]_2$ (d), and $[HgBr_2L]_2$ (e).

Fig. S2 Powder XRD patterns (black lines) for $[CuCl_2L]_2$ (a) and $[CuBr_2L]_2$ (b) along with the simulated pattern (red line) from single-crystal X-ray diffraction data.

Fig. S3 Top: Crystal structure of $[CuCl_2L]_2$ showing packing diagram (top) and $\pi \cdots \pi$ interactions between the adjacent quinolinyl groups and between quinolinyl and central phenyl group in the solid state (bottom).

Fig. S4 IR spectra of [CuCl₂L]₂ aggregates (a) representing the existence of water molecules in contrast to single crystal (b).

Fig. S5 Optical microscopic images showing self-aggregation of $[HgCl_2L]_2$ microcrystals in an aqueous solution: top, initial state; middle, after 12 h; bottom, after 1 day. Bar = 600 μ m.

Fig. S6 SEM images of $[CuX_2L]_2$ @cottom (left) and $[CuX_2L]_2$ @glass (right) showing crystal growth in the presence of glass-fiber and cotton-thread, respectively.

Fig. S7 Top: IR spectra of $[CuCl_2L]_2$ crystals before (a) and after (b) adsorption of 3,5-DBCat on the surface. 73 mg of $[CuCl_2L]_2$ crystals were immersed in a CDCl₃ solution of 3,5-DBCat at -15 °C for 6 h. Bottom: ¹H NMR spectra of the CDCl₃ solution before (a) and after (b) adsorption. Asterisks denote the resonances corresponding to toluene used as an internal reference.

Fig. S8 Top: plot showing catalytic oxidation yields of 3,5-DBCat as a function of time using $[CuCl_2L]_2$ in a various mixture of acetone and water at 50 °C. Bottom: the final oxidation yield of 3,5-DBCat as a function of water volume ratio.

Fig. S9 SEM-EDX data for $PdCl_2@[CuCl_2L]_2$.