Supplementary Information for

Polymorphism observed in dapsone-flavone cocrystals that present

pronounced differences in solubility and stability

Hongyan He, Linglei Jiang, Qi Zhang, Ying Huang, Jian-Rong Wang and Xuefeng Mei*

Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Figure S1. Polarized light microscopies for the cocrystal A, B, C and D

Figure S3. Powder X-ray diffraction of form **B** (a) experimental (b) simulated

Figure S4. Powder X-ray diffraction of form **D** (a) experimental (b) simulated

Figure S5. FT-IR spectra of cocrystal (a) A (b) B (c) C and (d) D

Figure S6. Comparison of TGA thermograms of DAP, FLA, A, B, C and D.

Figure S7. Comparison of PXRD patterns of (a) form C (b) form C heating for 2h at 90 $^{\circ}$ C (c) form D simulated

Figure S8. DVS diagrams of DAP, FLA, A, B, C and D

Figure S9. Comparison of PXRD patterns for form A before and after DVS.

Figure S10. Comparison of PXRD patterns for form **B** before and after DVS.

Figure S11. Comparison of PXRD patterns for form C before and after DVS.

Figure S12. Comparison of PXRD patterns for form **D** before and after DVS.

Figure S13. Comparison of PXRD patterns of (a) **A** (b) **B** (c) **A** and **B** slurry in hexane for 24 h

Figure S14. Comparison of PXRD patterns of (a) **B** (b) **C** (c) **B** and **C** slurry in hexane for 24 h

Figure S15. Comparison of PXRD patterns of (a) **A** (b) **C** (c) **B** (d) **A** and **C** slurry in hexane for 24 h

Figure S16. Comparison of PXRD patterns of (a) C (b) residual solid of A slurry in water

Figure S17. Comparison of Raman spectra for (a) DAP (b) FLA (c) C at 25 $^{\circ}$ C (d) C at 50 $^{\circ}$ C (e) C at 60 $^{\circ}$ C (f) C at 95 $^{\circ}$ C (g) D between 1800 to 400 cm⁻¹.

Figure S18. Comparison of ¹H-NMR (d_6 -DMSO, 400 MHZ) patterns of C, DAP and FLA. The integration values suggested that the stoichiometry of DAP:FLA = 1:1.

Figure S19. Comparison of HPLC analysis of DAP, FLA and cocrystal **C**. The integration area suggested that the stoichiometry of DAP:FLA = 1:1.

Figure S20. PXRD patterns for residual solids from **B** solubility experiments.

Figure S21. PXRD patterns for residual solids from C solubility experiments

Figure S22. PXRD patterns for residual solids from **D** solubility experiments.

Forms	D-H…A	d(D-H), Å	d(H…A), Å	d(D…A), Å	∠(D-H…A), deg	Symmetry code
-------	-------	--------------	--------------	--------------	------------------	---------------

Table S1. Hydrogen bond data for the polymorphic cocrystals

Α	N1-H1A…N2	0.86	2.38	3.174(2)	153	x+1, y, z
	N1-H1B…O4	0.86	2.21	2.957(6)	146	x+1/2,-y+3/2,z-1/2
	N2-H2A…O1	0.86	2.16	2.969(3)	156	-x+1/2,y-1/2,-z+1/2
	N2-H2B…O4	0.86	2.11	2.918(3)	157	-x+1/2,y-1/2,-z+1/2
В	N1-H1B…O4	0.86	2.13	2.971(9)	164	-x+1/2,-y+2,z+3/2
	N2-H2B…O1	0.86	2.30	3.146(8)	166	x+1/4,-y+7/4,z-1/4
D	N3-H3B…N4	0.86	2.36	3.102(3)	145	x-1,y,z
	N4-H4A…O10	0.86	2.03	2.821(3)	153	x+1,y-1,z
	N4-H4B…O12	0.86	2.11	2.942(3)	163	x+1,y-1,z
	N1-H1A…O6	0.86	2.19	2.990(3)	153	x-1,y,z
	N1-H1BO8	0.86	2.29	2.979(3)	137	x-1,y,z
	N2-H2A…N1	0.86	2.25	3.082(3)	165	x+1,y,z
	N2-H2B…O4	0.86	2.20	3.055(3)	173	

Table S2. Summary of Equilibrium Solubility of DAP, FLA and DAP-FLA cocrystals

Matarial	Equilibriu	ım solubility	Residue after	
Material	pH 2.0	pH 4.6	pH 6.8	equilibrium
DAP	0.40*	0.17*	0.17*	DAP hydrate
Α	0.47*	0.20*	0.18*	С
В	0.33	0.17	0.17	В
С	0.38	0.19	0.15	С
D	0.10	0.07	0.09	D

*Note: Value are corresponding to the equilibrium solubility of the residue solids. Table S3. Summary of Intrinsic Dissolution Rates of DAP, FLA and DAP-FLA cocrystals

Material IDR(ug/min ·	cm ²)
-----------------------	-------------------

	pH 2.0	pH 4.6	pH 6.8
DAP	98.9	44.9	31.1
Α	46.6	35.6	19.8
В	15.5	10.0	8.7
С	12.9	9.2	2.4
D	8.0	8.1	5.1