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Experimental Section

Materials and Physical Measurements

All materials were commercially available and used as received. Infrared spectrum was
recorded on a Bruker VERTEX-70 FT-IR spectrophotometer using a KBr pellet in the range of
400~4000 cm!. Elemental analyses were performed via Vario EL III Etro Elemental Analyzer.
The solid-state circular dichroism (CD) spectrum was recorded on a MOS-450 Spectrometer with
a KBr pellet. Thermogravimetric analysis (TGA) was performed in N, atmosphere with a heating
rate of 10 °C/min! using TGA/SDTAS851e. Powder X-ray diffraction (PXRD) pattern was
recorded on a Philips X'PertPro instrument with CuKa radiation (1 = 1.54056 A) in the range 2 6 =
5-50 © at room temperature. Magnetic measurements were carried out on a Quantum Design

MPMS-XL SQUID magnetometer.

Crystallographical Section

X-ray single crystal data were collected at 296(2) K on a Bruker Apex-II CCD detector
diffractometer with MoKa radiation (A = 0.71073 A). Data reduction and absorption collection
were made with empirical methods. The structures were solved by direct methods using SHELXS-
97! and refined by full-matrix least-squares techniques using SHELXL-97.2 Anisotropic
displacement parameters were refined for most non-hydrogen atoms. And all hydrogen atoms
bonded to C atoms were added in the riding model while the u,-OH hydrogen atoms were located
from the difference Fourier maps. As well, a D-camphoric acid ligand was disordered and C13,
C14, C16 atoms in carbon ring and C17, C19 atoms in methyl were treated as two parts with
occupancy of 50%, respectively. The crystal data and refinement details for compound 1 are listed

in Table S1. The selected bond lengths and angles are listed in Table S2.
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Table S1 Crystallographic data for compound 1.

Compound 1

Empirical formula Cs5oH75N150,,
Formula weight 1207.25
Crystal system Orthorhombic
Space group P2,2,2,

a(A) 12.4370(6)

b (A) 14.0606(7)
c(A) 32.3952(16)
a(°) 90.00

L(©) 90.00

7 (°) 90.00

Vv (A3) 5665.0(5)

VA 4

T (K) 296(2)

D, (g cm3) 1.415

4 (mm) 1.063

Flack parameter 0.05(3)
F(000) 2552

6 limits (°) 1.58 to 25.00
Ref. collected 9927

Ref. unique 8442

Rint 0.0315

R index [[>20(1)] R;=0.0618, wR,=0.1562
R(all data) R;=0.0742, wR,=0.1622
GOOF 1.057

Apiax! Apmin (€A3) 1.090/-1.346

R = Z(IFHFANZIFo|, wR = AZW(FAFPVIWI(FAPI2, w = V[ (F,))HaP)*+bP], P =

(F,°+2F)/3].1: a=0.0535, b = 24.5694.
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Table S2 Selected bond lengths [A] and angles [°] for compound 1.

Bond length (A)
Nil-08 1.993(5) Ni2-016 2.072(4)
Nil-06 2.016(5) Ni2—04 2.078(4)
Nil-010 2.029(4) Ni2-O18 2.119(5)
Nil-012 2.038(4) Ni3-05 1.996(4)
Nil-022 2.078(4) Ni3—-Ol11 2.022(4)
Nil-021 2.083(5) Ni3-020 2.044(4)
Ni2-07 1.990(5) Ni3—022 2.072(4)
Ni2-09 2.056(4) Ni3-02 2.080(5)
Ni2-021 2.080(5) Ni3-0O14 2.143(5)

Bond angles (°)
0O8-Nil-06 178.7(2) 021-Ni2-04 171.39(18)
08-Nil-012 87.8(2) 016-Ni2-04 81.22(18)
06-Nil-012 91.1(2) O7-Ni2-018 178.01(19)
08-Nil-010 93.3(2) 09-Ni2-018 87.13(19)
06-Nil-010 87.7(2) 021-Ni2-018 86.51(18)
0O12-Nil-010 177.7(2) 016-Ni2-018 87.72(19)
08-Nil-022 83.37(18) 0O5-Ni3-011 94.71(19)
06-Nil-022 97.38(18) 05-Ni3-020 90.44(19)
012-Nil-022 90.27(18) 02-Ni3-014 91.0(2)
010-Nil-022 87.88(19) O11-Ni3-020 168.34(18)
08-Nil-021 96.62(18) 0O5-Ni3-022 94.66(18)
06-Nil-021 82.63(18) O11-Ni3-022 99.16(17)
012-Nil-021 89.82(19) 020-Ni3-022 90.82(18)
010-Nil-021 92.04(18) 0O5-Ni3-02 88.1(2)
022-Nil-021 179.9(2) O11-Ni3-02 88.85(19)
07-Ni2-09 94.8(2) 020-Ni3-02 80.86(18)
07-Ni2-021 93.57(19) 022-Ni3-02 171.28(18)
09-Ni2-021 99.31(17) 0O5-Ni3-014 178.05(18)
07-Ni2-016 90.29(19) O11-Ni3-014 86.97(18)
09-Ni2-016 168.58(17) 020-Ni3-014 87.73(18)
021-Ni2-016 90.54(17) 022-Ni3-014 86.04(18)
07-Ni2-04 89.0(2) Nil-021-Ni2 110.62(19)
09-Ni2-04 88.65(18) Nil-022-Ni3 110.75(19)

04-Ni2-018  90.63(19)

Table S3 BVS analyses of Ni and u,-O atoms for 1

Atoms Nil Ni2 Ni3 u-021 U022
BVS 2.125 1.983 2.021 0.630 0.641
Assignment Ni2 Ni2* Ni2* OH- OH-

The oxidation state of a particular atom can be taken as the nearest integer to the value. 3
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Scheme 1 Coordination modes of D-camphoric acid ligand in compound 1.

3-D-H,ca c25

2-D-ca* 4-D-Hca
Fig. S1 Left: the asymmetric unit of compound 1. Right: the 2-D-ca?" is disordered and C13, C14,
C16 in carbon ring as well as C17, C19 in methyl are treated as two parts with occupancy of 50%

respectively in pink and rose red colors. H atoms are omitted.

Fig. S2 The other type of nested coaxially helices of compound 1. Color Scheme: Ni green; O

orange. The D-camphoric acid ligands are in blue and pink colors for clarity. H atoms are omitted.
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Fig. S3 IR spectrum for compound 1.
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Fig. S4 PXRD curves for compound 1.

S6



100

80

Weight (%)
(=)
[—]
1

40 -

20

: T y T . T y T J T y

0 100 200 300 400 500 600
T(C)

Fig. S5 TGA curve for compound 1.
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Fig. S6 CD spectrum of 1 in a KBr pellet.
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Fig. S7 The y,, ! vs. T plot of 1 in the range of 2-300 K at 1 KOe. The solid line is the best-fit
above 80 K according to the Curie-Weiss law.
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Fig. S8 The y, vs. T plot of 1 in the range 2-300 K at 1 kOe. The solid line is the best-fit above 25
K.
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Fig. S9 FCM and ZFCM curves at 100 Oe and 200 Oe for 1.
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Fig. S10 Plots of the temperature dependence of the ac susceptibility ' and y" obtained at 3 Oe

field for 1.
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