Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2015

## **Supporting information**

## A Series of Tetranuclear Lanthanide Compounds Constructed by *in-situ* Polydentate Ligands: Syntheses, Structures, and the SMM Behaviour of the Dy<sub>4</sub> Compound

Shuang-Yan Lin,<sup>a</sup> Xiao-Lei Li,<sup>b</sup> Hongshan Ke,<sup>c</sup> and Zhikun Xu\*a



Fig. S1 *M vs. H* data of compound 4 at 1.9 K.



Fig. S2 Frequency dependence of the in phase ac susceptibility of 4 below 30 K, under a zero-dc field. Solid lines are guides for the eyes.



Fig. S3 Temperature dependence of the ac susceptibility for 1 under zero dc field. Solid lines are guides for the eyes.



Fig. S4 Frequency dependence of the ac susceptibility at 1.9 K performed at different dc fields for compound 4. Solid lines are guides for the eyes.



Fig. S5 Frequency dependence of the in-phase ac susceptibility of compound 4 under 500 Oe dc field at 1.9 K. Solid lines are guides for the eyes.



Fig. S6 Cole–Cole plots for compound 2 under zero-dc field below 5 K, solid lines are guides for the eyes. The solid lines are the best fits to the experimental data, obtained with the generalized Debye model.

| Table S1. Lanthanide Geometr | y Analysis b | y SHAPE Software | for Compounds 1-4. |
|------------------------------|--------------|------------------|--------------------|
|------------------------------|--------------|------------------|--------------------|

| Sha | ре  | Capped square antiprism J10 | Capped square antiprism | Tricapped trigonal prism |
|-----|-----|-----------------------------|-------------------------|--------------------------|
| 1   | Nd1 | 1.953                       | 0.945                   | 0.725                    |
|     | Nd2 | 3.769                       | 1.931                   | 2.889                    |
| 2   | Sm1 | 3.570                       | 0.847                   | 0.696                    |
|     | Sm2 | 1.814                       | 1.749                   | 2.759                    |
| 3   | Gd1 | 1.747                       | 0.802                   | 0.699                    |
|     | Gd2 | 3.405                       | 1.623                   | 2.684                    |
| Sha | ре  | Square antiprism            | Triangular dodecahedron | Bicapped trigonal prism  |
| 4   | Dy1 | 4.128                       | 3.743                   | 3.017                    |
|     | Dy2 | 3.414                       | 1.760                   | 2.696                    |

| 0 field |                                                     |                                                     | 500 Oe field |      |                                                     |                           |         |
|---------|-----------------------------------------------------|-----------------------------------------------------|--------------|------|-----------------------------------------------------|---------------------------|---------|
| Т (К)   | χ <sub>s</sub> (cm <sup>3</sup> mol <sup>-1</sup> ) | χ <sub>t</sub> (cm <sup>3</sup> mol <sup>-1</sup> ) | α            | Т(К) | χ <sub>s</sub> (cm <sup>3</sup> mol <sup>-1</sup> ) | χ <sub>t</sub> (cm³mol⁻¹) | α       |
| 1.9     | 3.61961                                             | 21.83854                                            | 0.24746      | 1.9  | 0.73991                                             | 25.4352                   | 0.50565 |
| 2.2     | 1.06809                                             | 23.51895                                            | 0.47486      | 2.2  | 0.90904                                             | 22.68315                  | 0.49048 |
| 2.5     | 1.17322                                             | 20.28112                                            | 0.4538       | 2.5  | 1.04809                                             | 20.08098                  | 0.47649 |
| 3.0     | 1.29915                                             | 16.92354                                            | 0.43031      | 3.0  | 1.19981                                             | 16.82138                  | 0.4586  |
| 3.5     | 1.38407                                             | 14.4908                                             | 0.41297      | 3.5  | 1.32868                                             | 14.40884                  | 0.44009 |
| 4.0     | 1.45571                                             | 12.59261                                            | 0.39786      | 4.0  | 1.41413                                             | 12.66948                  | 0.42931 |
| 4.5     | 1.5256                                              | 11.16032                                            | 0.38487      | 4.5  | 1.52361                                             | 11.18491                  | 0.4111  |
| 5.0     | 1.59963                                             | 10.01827                                            | 0.37048      | 5.0  | 1.60785                                             | 10.03128                  | 0.39643 |
| 5.5     | 1.75284                                             | 8.28285                                             | 0.3444       | 6.0  | 1.78203                                             | 8.30976                   | 0.36586 |
| 6.0     | 1.92166                                             | 7.07298                                             | 0.32768      | 7.0  | 1.95675                                             | 7.08624                   | 0.34314 |
| 7.0     | 2.11003                                             | 6.18395                                             | 0.30675      | 8.0  | 2.19473                                             | 5.87076                   | 0.28418 |
| 8.0     | 2.28938                                             | 5.30126                                             | 0.26359      | 9.0  | 2.49367                                             | 5.33115                   | 0.19297 |
| 9.0     | 2.37229                                             | 4.62446                                             | 0.21296      | 10.0 | 2.39614                                             | 4.95997                   | 0.27321 |
| 10      | 2.55667                                             | 4.09942                                             | 0.17608      | 12.0 | 2.57773                                             | 4.14763                   | 0.20834 |
| 12      | 2.54516                                             | 3.55464                                             | 0.10145      | 14.0 | 2.58622                                             | 3.562                     | 0.10169 |
| 15      |                                                     |                                                     |              | 16.0 | 2.24206                                             | 3.15174                   | 0.20069 |

Table S2. Relaxation fitting parameters from Least-Squares Fitting of  $\chi(\omega)$  data.