Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information:

Seedless growth of ZnO nanorods on TiO_2 fibers by chemical bath deposition

Benxue Liu, Cong Feng, Xingshuang Zhang, Luyi Zhu*, Xinqiang Wang, Guanghui Zhang, Dong

Xu*

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University,

Jinan 250100, PR China

Synthesis of organotitanium compound

Typically, DI water (20.94 g), Hacac (38.80 g), TEA (156.84 g) were added into TiCl₄ (73.50 g) under ice-water bath in turn. Before reaction, all reactants were diluted by methanol that 200 ml, 100 ml, 112 ml, and 202 ml methanol solution were added respectively. A gold solution was obtained after mixing these species. The mixture was evaporated into dry powders using vacuum evaporator under a condition of -0.1 mbr, 50 °C. The powders were resolved by THF (800 ml), and the unresolved component was filtrated. Aurantia powders (65.05 g, yield 85 %) which could be used as precursor to force-spinning were acquired after evaporating the THF soultion. The main chemical reaction could be simplified as the following equation.

$$TiCl_4 + 3H_2O + Hacac + 4TEA \xrightarrow{CH_3OH} Ti(OH)_3acac + 4TEA \cdot HCl$$

Table S1. Parameters of force-spinning process

Temperature	32 °C
Relative Humidity	42 %
Rotating speed	23000 rpm
Viscosity	88.85 Pa•s

Fig. S1. (a) Photo image and (b) XRD pattern of $\rm TiO_2$ fibers heat-treated at 500 $^{\circ}\rm C$

Fig. S2. Magnified SEM image of ZnO NRs anchored on ${\rm TiO_2}$ fibers

 $Fig.~S3.~Zeta~potential~of~ZnO~growth~solution~and~TiO_2~fiber~aqueous~solution~at~various~pH~value$

Fig. S4. Oriented attachment growth found in the ZnO NRs homogeneously grown in growth solution