Supporting Information

Ionothermal Synthesis and Proton-Conductive Property of NH₂-MIL-53 MOF Nanomaterials

Jia Liu,^a Xiaoqin Zou,^b* Chuanfang Liu,^b Kun Cai,^c Nian Zhao,^c Weitao Zheng^a* and Guangshan Zhu^c

^a Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China. E-mail: <u>wtzheng@jlu.edu.cn</u>.

^b Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. E-mail: <u>xiaoqinzou123@gmail.com</u>.

^c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Experimental Section

1. Chemicals

AlCl₃•6H₂O (Aladdin Reagent, Co., Ltd, Shanghai, China, 99%), 2-aminoterephthalic acid (NH₂-H₂BDC, Energy Chemical, Shanghai, China, 98%), ionic liquid of 1-ethyl-3-methyl-imidazolium bromide (Shanghai Cheng Jie Chemical Co. Ltd, 99%), dimethylformamide (DMF), and ethanol were used as received.

2. Synthesis of NH₂-MIL-53(Al)_{it}

The typical preparation procedure involves firstly dissolving 190 mg NH₂-H₂BDC into 1 g melted 1-ethyl-3-methyl-imidazolium bromide at 100 °C under stirring until a clear solution was obtained; subsequently adding 127 mg AlCl₃•6H₂O into the solution above. The resulted clear precursor in a 10 mL closed glass vessel was heated at 150 °C for 7 days in a preheated oven, and then solid crystals were obtained. After cooling down, the product was cleaned with repeated centrifugations for 5 times using ethanol (10000 r/min, 10 minutes for each cycle) in order to remove the supernatant ionic liquid solvent. The collected powder was dried at 85 °C, and this sample is

designated as NH₂-MIL-53(Al)_{it}. The reference sample (designated as MIL-53(Al)_{it}) was prepared according to the same protocol.³³ NH₂-MIL-53(Al)_{ref(as)} sample was synthesized from a liquid mixture of 493.6 mg AlCl₃•6H₂O and 379.6 mg NH₂-H₂BDC in 5 mL water at 150 °C for 5 h according to our previous procedure.³⁶ The obtained powder was first treated in DMF at 150 °C for 5 h, followed by repetitive washing (10 mL DMF, three times), and then activated under vacuum to remove the solvent at 150 °C overnight prior to further tests (designated as NH₂-MIL-53(Al)_{ref}).

3. Characterizations

The crystalline structures of NH₂-MIL-53(Al)_{it} crystals were determined by X-ray diffraction (XRD) measurements using Riguku D/MAX2550 diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å) running at a voltage of 50 kV and a current of 200 mA. The morphology of this sample was observed on field-emission scanning electron microscope (FE-SEM: Hitachi SU8010) and transmission electron microscope (TEM: JEOL JSM-3010). Fourier transform infrared spectra (FTIR) were collected on a Nicolet Impact 410 FTIR spectrometer at room temperature in the range of 400-4000 cm^{-1} , with potassium bromide pellets. Al content in NH₂-MIL-53(Al) was analyzed by inductively coupled plasma atomic emission spectrometer (ICPAES, Perkin Elmer Optima 3300DV), and C, H, N contents were determined using a Perkin Elmer 2400 Series II CHNS/O analyzer. Simultaneous thermal gravimetric and differential thermal analyses (TG-DTA) were performed on NH₂-MIL-53(Al)_{it} and NH₂-MIL-53(Al)_{ref} samples in air (10 °C min⁻¹) (Netzsch Sta 449c thermal analyzer). Based on the weight loss, the volume of ionic liquid occupied in pores (0.145 cm^3) was calculated using the equation $V_{ii}=m/\rho$ (V is the volume of ionic liquid, m is its mass, ρ is the density of 1.3 g cm⁻³). The pore volume in NH₂-MIL-53(Al) (0.167 cm³) was S1)³⁵ estimated from crystallography (Fig. using the equation of $V_{\text{pore}} = (m/M) * NA * (\pi r^2 a)$ with the following parameters per unit cell: m is NH₂-MIL-53(Al) mass without ionic liquid, M is the molar mass of 892 g mol⁻¹ with molecular formula of C₃₂N₄Al₄O₂₀H₂₄, NA is Avogadro's number, r is the pore radius (pore diameter of ~0.75 nm), a=0.692 nm, b=1.767 nm, c=1.212 nm. The pore filling factor (0.87) is estimated from the difference between V_{il} and V_{pore}.

Fig. S1 Crystallographic structure of NH₂-MIL-53(Al) unit cell.

4. Proton conductivity

Pellets with 13 mm in diameter and 0.85-0.95 mm thick were prepared by pressing material (about 150 mg) at 40 kN cm⁻². The proton conductivities of NH₂-MIL-53(Al)_{it}, NH₂-MIL-53(Al)_{ref} and MIL-53(Al)_{it} samples were estimated in a quasi-four-probe method conductivity cells by the AC impedance spectroscopy technique. The impedances were measured with a frequency response analyzer/potentiostat (Princeton Applied Research PAR 2273, EG&GPARC, Princeton, NJ) over a frequency range from 0.1 Hz to 1 MHz, 10 mV ac perturbation and 0.0 V dc rest voltage. The samples were covered with silver paint to improve contact with the two copper blocking electrodes in a measurement cell, and placed in a temperature and humidity controlled environment. The Nyquist plot obtained from impedance measurement comprises a depressed semicircular arc at high frequency and a spur at low frequency. The conductivity (σ , S cm⁻¹) of the sample was calculated from the impedance data, using the relation $\sigma = L/RA$, where L (cm) is the thickness of the sample, A (cm²) is the face area and R (Ω) is the sample resistance estimated by extrapolation of the high-frequency arc crossing to the real axis.⁹ The measurements

have been repeated three times to get reproducible results.

Fig. S2 XRD patterns of (a) NH_2 -MIL-53(Al)_{ref}, and (b) simulated one from Al(OH)[NH₂-BDC]·H₂O single crystal.³⁵

Fig. S3 Representative SEM (a) and TEM (b) pictures of NH_2 -MIL-53(Al)_{it}, and SEM picture (c) of NH_2 -MIL-53(Al)_{ref(as)} samples.

Fig. S4 TG-DTA curves of NH_2 -MIL-53(Al)_{ref} reference sample.

Fig. S5 IR spectra of NH₂-MIL-53(Al)_{it}, NH₂-MIL-53(Al)_{ref} and 1-ethyl-3-methyl-

imidazolium bromide.

Sample	N (wt.%) ^a	C (wt.%) ^a	H (wt.%) ^a	Al (wt.%)	» N/C	Al/C
NH_2 - MIL -53 $(Al)_{it}$	6.74	38.7	2.90	9.6	0.174	0.248
NH ₂ -MIL-53(Al) _{ref}	5.44	38.3	2.92	11.8	0.142	0.308

^a measured on CHNS/O analyzer.

^b measured on ICP spectrometer.

Elemental analysis cal. for NH₂-MIL-53(Al) (Al(OH)[NH₂-BDC]·H₂O): C, 39.83%; H, 3.32%; N, 5.81%; Al, 11.2%; N/C, 0.146; Al/C, 0.282. The similar values in N/C and Al/C ratios for NH₂-MIL-53(Al)_{ref} and NH₂-MIL-53(Al) suggest that NH₂-MIL-53(Al)_{ref} has the same structure of Al(OH)[NH₂-BDC]·H₂O.

Table S2 A summary of proton-conducting performances of different MOF materials

 tested under high temperatures and low humidity in recent reports.

MOFs	Temperature (°C)	RH (%)	Conductivity (S cm ⁻¹)	Ref.
NH ₂ -MIL-53(Al)	80	26	3.0×10 ⁻⁵	This work
MOF-74	146	anhydrous	4.3×10 ⁻⁹	15
In-IA-2D	90	anhydrous	1.18×10 ⁻⁵	7
$Zn(H_2PO_4)_2(TzH)_2$	45-150	anhydrous	10-7~10-4	S1
Al(OH)(1, 4-ndc)	25-120	anhydrous	10-8~10-5	27
$Zn_2(ox)_3$	30-150	anhydrous	10-5~10-4	S2
UiO-67	50-120	anhydrous	10-7~10-3	S3
ZIF-8	80	20	10-8	S4
$La_3PP_4(H_2O)_6$	90-110	20	10-7	8
Mg, Sr, Ba-BPTC	23-100	43-98	10-8~10-4	12
Eu ₂ (CO ₃)(ox) ₂ (H ₂ O) ₂	25-100	40-90	10-6~10-4	S5

Supplementary references:

1. D. Umeyama, S. Horike, M. Inukai, T. Itakura and S. Kitagawa, *J. Am. Chem. Soc.*, 2012, **134**, 12780-12785.

2. S. S. Nagarkar, S. M. Unni, A. Sharma, S. Kurungot and S. K. Ghosh, *Angew. Chem. Int. Ed.*, 2014, **53**, 2638-2642.

3. S. C. Liu, Z. F. Yue and Y. Liu, *Dalton Trans.*, 2015, 44, 12976-12980.

4. P. Barbosa, N. C. Rosero-Navarro, F. N. Shi and F. M. L. Figueiredo, *Electrochim. Acta*, 2015, **153**, 19-27.

5. Q. Tang, Y. W. Liu, S. X. Liu, D. F. He, J. Miao, X. Q. Wang, G. C. Yang, Z. Shi and Z. P. Zheng, *J. Am. Chem. Soc.*, 2014, **136**, 12444-12449.