Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

$ESI \ {\rm for}$

Marzena Banasiewicz,^{*a*} Irena Deperasińska,^{*a*} Artur Makarewicz,^{*a*} Dikhi Firmansyah,^{*b*} Daniel T. Gryko^{*b,c,**} and Bolesław Kozankiewicz^{*a,**}, *Why vertically* π *-expanded imidazo*[1,2-*a*]*pyridines are weak fluorescence emitters: experimental and computational study.*

Table S1. Calculated electronic transition energies (ΔE) and their oscillator strengths (f). Graphical presentations are given on the right side. The lowest energy singlet $n\pi^*$ states are located at 38498 cm⁻¹ and at 38518 cm⁻¹ in compounds 2 and 3, respectively. All other states are of $\pi\pi^*$ type.

	ΔE [cm⁻¹]	λ [nm]	f	25000 ¬	(opt.S₀) (opt.S₁)
ి. - అంత్రంత ఎ త్యంత్రంలం	21275 26383 27125 32125 34655 35377 35910	$S_0 \rightarrow Si \\ 470.0 \\ 379.0 \\ 368.7 \\ 311.3 \\ 288.6 \\ 282.7 \\ 278.5 \\ \end{cases}$	0.1155 0.0520 0.2836 0.0806 0.1065 0.0394 0.0123	20000 -	$\begin{array}{c c} \hline T_3 \\ \hline T_2 \\ \hline T_2 \\ \hline T_1 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \mathbf{S}_1 \\ \mathbf{S}_1 \\ \hline \mathbf{S}$
موقوقود موقوقود رقوقو	36868 38233 38498	271.2 261.6 259.8	0.0006 0.0523 0.0004	- 10000 -	21275 c
	16424	$S_1 \rightarrow S_0$ 608.9	0.0706	5000 -	= 145 <u>15</u> v _{abs} = 2
	14615 18932 23455	$S_0 \rightarrow T_i$ 684.2 528.2 426.3		0	
	ΔE [cm ⁻¹]	λ [nm]	f	25000 ₁	(opt.S ₀) (opt.S ₁)
	22036 26281 26638 31536 34462 35710 35856 36688 38518	$S_0 \rightarrow Si$ 453.1 380.5 375.4 317.1 290.2 280.0 278.9 272.6 259.6	0.0233 0.0579 0.0759 0.1029 0.0822 0.0080 0.0059 0.0278 0.0003	20000 - [15000 -	$\begin{bmatrix} T_{3} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{1} \\ T_{1} \\ T_{1} \\ T_{2} \\ T_$
5-9-5	38544 18253 14149 19736 22994	259.4 $S_1 \rightarrow S_0$ 547.9 $S_0 \rightarrow T_i$ 706.8 506.7 434.9	0.1606	5000 - 0	vph= 14149 cm vabs= 2203
				_	

Table S2. Comparison of shapes of HOMO and LUMO orbitals of both isomers and the directions of their dipole moments

НОМО	LUMO	dipole moment
		公子

Table S3. Frequencies of vibrations calculated for optimized structures of compounds 2 and 3 in S_0 and S_1 electronic states. Vibrations active in the fluorescence spectra indicated in bold.

compound	2		3		compound	2		3	
elextronic					electronic				
state	S ₀	S ₁	S ₀	S ₁	state	S_0	S ₁	S ₀	S ₁
mode					mode				
number					number				
1	44.5	45.0	48.5	53.8	51	1059.5	1053.6	1056.1	1043.2
2	63.4	69.3	62.4	63.1	52	1070.1	1064.9	1065.1	1054.9
3	106.9	101.8	109.9	103.4	53	1082.7	1071.3	1082.6	1067.0
4	127.1	123.7	130.4	129.8	54	1100.4	1084.9	1093.5	1080.4
5	178.4	175.6	179.1	176.1	55	1130.9	1120.4	1120.1	1114.2
6	208.1	188.6	209.7	193.7	56	1149.1	1138.5	1159.7	1154.0
7	224.3	203.3	224.4	213.6	57	1174.2	1169.3	1181.3	1175.9
8	257.8	256.9	255.0	250.2	58	1192.1	1186.3	1188.3	1184.4
9	293.0	287.8	294.5	290.7	59	1195.8	1189.8	1193.7	1187.8
10	299.8	294.5	308.5	295.1	60	1213.6	1202.7	1209.1	1189.9
11	310.0	310.4	318.8	318.9	61	1229.6	1224.6	1224.0	1220.5
12	341.4	336.3	329.8	326.0	62	1236.1	1226.7	1245.6	1233.8
13	362.6	360.3	357.2	357.2	63	1245.8	1265.5	1249.6	1246.6
14	450.7	424.1	439.0	421.9	64	1290.2	1274.9	1280.1	1279.7
15	459.5	446.3	441.7	435.4	65	1308.0	1292.8	1310.1	1291.9
16	472.7	456.8	492.4	457.3	66	1320.0	1306.9	1331.4	1309.0
17	498.2	489.5	506.2	473.7	67	1335.0	1321.6	1334.8	1321.3
18	511.4	495.4	515.5	500.3	68	1362.9	1349.9	1363 4	1357.8
19	513.7	505.3	529.5	507.4	69	1364.9	1369.5	1364.3	1370.4
20	538.0	507.8	530.2	524 6	70	1368.8	1374.3	1372 1	1376.4
20	579.1	566.7	573.6	561.0	70	1386.9	1380.2	1388.0	1387 7
21	503.8	570.6	586.8	561.0	72	1303.1	1/17 1	1306.2	1/02 0
22	505.0	501.0	507.4	590.0	72	1423.1	1401 /	1/17 9	1/12 0
23	611.2	591.0	597.4 607.0	500.0	73	1423.1	1421.4	1412.0	1413.9
24	627.4	617 0	645.1	622.2	74	1431.0	1455.1	1404.2	1440.7
20	027.4	017.0 625.7	650.1	620 7	75	1409.7	1400.1	14/1.3	1401.0
20	0000.0	642.7	009.1	646.6	70	1400.4	1407.0	1402.0	1402.4
27	672.6	043.7	000.2 660.5	040.0	70	1500.0	1400.0	1494.9	1400.0
28	072.0	057.0	009.5	059.0	78	1532.7	1511.0	1529.1	
29	679.2	671.1	681.7	664.8	/9	1543.1	1528.0	1541.6	1515.7
30	743.8	696.8	740.8	693.0	80	1560.5	1535.8	1569.9	1527.0
31	752.9	701.6	752.4	/18.1	81	15/2.3	1553.4	15/2.6	1548.8
32	756.1	730.2	755.3	736.9	82	1586.9	15/8.6	1585.3	15/1.1
33	767.4	751.3	759.7	742.7	83	1623.4	1588.4	1625.1	1585.9
34	770.5	760.4	770.7	743.3	84	1644.8	1606.6	1647.8	1603.7
35	791.0	764.6	791.6	753.7	85	1661.4	1632.7	1651.5	1612.7
36	795.8	773.0	804.6	762.9	86	1663.6	1643.2	1664.9	1638.0
37	821.8	785.2	822.6	795.1	87	1675.9	1652.1	1677.0	1664.4
38	856.0	789.0	835.4	799.0	88	3177.7	3181.3	3177.3	3176.1
39	857.5	814.5	855.3	827.2	89	3187.0	3183.7	3187.3	3188.4
40	865.6	830.8	871.7	831.6	90	3189.4	3191.5	3188.9	3191.2
41	871.3	853.8	879.0	847.8	91	3191.9	3194.2	3197.0	3193.4
42	879.3	857.0	885.8	872.9	92	3201.9	3199.5	3203.0	3195.9
43	889.3	864.2	887.8	880.9	93	3204.2	3207.9	3203.8	3198.4
44	897.9	878.0	893.7	888.4	94	3211.2	3210.0	3205.5	3210.2
45	935.9	929.9	929.4	917.5	95	3214.9	3221.5	3213.8	3214.2

46	943.5	949.5	947.7	929.0	96	3228.9	3235.2	3229.4	3234.2
47	969.1	953.0	970.7	951.8	97	3235.5	3236.8	3235.7	3236.0
48	970.7	961.6	972.3	965.1	98	3239.8	3237.9	3239.5	3242.3
49	972.4	961.9	988.0	980.4	99	3248.5	3258.4	3247.2	3258.7
50	986.0	987.6	994.2	991.7					

Table S4. Graphical presentation of vibrations "170", "360", "1530" and "1540" cm⁻¹ of both molecules

Figure S1. Fluorescence decays of compounds **2** and **3** in *n*-nonane at room temperature (red lines) and at 5 K (green lines). Excitation pulses are given as solid black lines. Fits to the single exponential dependences.

Figure S2. Phosphorescence spectrum of compound **2** in *n*-decane at 5 K, and the calculated Franck-Condon factors (for a single site).

References

Gaussian 09, Revision B.01, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.; Gaussian Inc., Wallingford CT, **2010**.