Electronic Supplementary Information

Improved sensitization efficiency in Er³⁺ ions and SnO₂ nanocrystals co-doped silica thin films

Xiaowei Zhang,^{*a,b*} Shaobing Lin,^{*a*} Tao Lin,^{*a,c*} Pei Zhang,^{*a,d*} Jun Xu,^{**a*} Ling Xu^{*a*} and Kunji Chen^{*a*}

^aNational Laboratory of Solid State Microstructures, Department of Electronic Science and Engineering and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

^bMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.

^cDepartment of Physics, Guangxi University, Nanning, 530004, China.

^dHenan Key Lab of Information-based Electrical Appliances, Department of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China. *E-mail: junxu@nju.edu.cn; Fax: +86-25-83594836; Tel: +86-25-83595535.

1. An estimation on the average sizes of SnO₂ NCs with the increasing annealing temperature according to the excitation peaks' position.

As shown in Fig.4, the redshifts of the excitation from band-to-band transition of SnO_2 nanocrystals (NCs) can be explained as the enlargement of the average sizes with the increasing annealing temperatures. Based on these excitation peaks, we also estimated the average size of SnO_2 NCs using the effective mass theory ^[1].

$$E_g(R) = E_g(R \to \infty) + \frac{h^2}{8R^2} \times \left(\frac{1}{m_e^*} + \frac{1}{m_h^*}\right) - \frac{1.8e^2}{4\pi\varepsilon\varepsilon_0 R} + smaller \ terms$$

where $E_g(R)$ is the band gap energy of SnO₂ NCs, R is the average radius of SnO₂ NCs, $E_g(R \to \infty)$ is the band gap energy of SnO₂ bulk materials and ε is the relative dielectric constant. m_e^* and m_h^* stand for the effective mass of an electron and a hole, respectively. For SnO₂ NCs,

$$E_g(R \to \infty) = 3.60 \ eV_{, \varepsilon} = 14, \varepsilon_0 = 8.85 \times 10^{-12} F/m_{e}$$

 $m_e^* = 0.35 \ m_0, \ m_h^* \gg m_e^*$

where m_0 stands for the free electron mass. Meanwhile, $E_g(R)$ can be calculated as follows,

$$E_g(R) = \frac{1240}{\lambda_{exc}}$$

where λ_{exc} stands for the excitation peak from band-to-band transition of SnO₂ NCs.

As shown in Table 1, it is found that the average sizes of SnO_2 NCs with different annealing temperatures are consistent with the TEM observations.

Annealing temperature / °C	800	900	1000	Bulk materials
$\lambda_{exc / nm}$	293	300	322	_
Band gap / eV	4.23	4.13	3.85	3.60
Average size / nm	2.92	4.22	5.12	_

Table 1S. Band gaps and average sizes of SnO₂ NCs after annealing at different temperatures.

2. XRD patterns of samples after annealing at 1000°C.

In order to characterize further the formation of SnO_2 NCs, the aged gels were annealed at 1000 °C and then milled into powers for the X-ray diffraction (XRD, using 0.1540562 nm Cu K α radiation) test.

XRD pattern for corresponding sol-gel powers containing with 20% Sn after annealing at 1000°C is demonstrated in Fig. 1S(a). The pattern shows all the diffraction peaks assigned to tetragonal rutile crystalline phase of the SnO₂ NCs (JCPDS No. 41-1445), which is consistent with the TEM observation results. As shown in Fig. 1S(b), the related XRD spectra express a slight shifting, revealing the fact that Er^{3+} ions should be very likely incorporated in the D_{2h} lattice site of Sn⁴⁺.

Fig.1S (a) XRD pattern of the 20% Sn doped SiO₂ powder samples after annealing 1000 °C. (b) Comparison of XRD spectra of pure and Er^{3+} -doped SnO₂ NCs silica thin films.

Reference

[1] L. Brus, J. Phys. Chem., 1986, 90, 2555.