Supporting information

-for-

Can a Single Water Molecule Affect the Hydrogen

Abstraction Reaction of HO₂+NO₂ under Tropospheric

Conditions?

Tianlei Zhang^{a,*}, Rui Wang^a, Hao Chen^a, Suotian Min^a, Zhiyin Wang^a, Caibin Zhao^a, Qiong Xu^a, Lingxia Jin^a, Wenliang Wang^{b,*}, Zhuqing Wang^c

^a School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China

^b Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

^c Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Shandong Academy of Sciences Institute of Oceanographic Instrumentation, Qingdao 266001, China.

^{*} Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083. e-mail: <u>ztianlei88@163.com</u> (T. L Zhang); <u>wlwang@snnu.edu.cn</u> (W. L. Wang).

Fig. S1 Geometrical parameters for the singlet naked reaction of HO₂+NO₂ optimized at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory

Fig. S2 Schematic energy diagram of the formation of (a)cis-HONO+ ${}^{1}O_{2}$; (b) trans-HONO+ ${}^{1}O_{2}$ and (c)HNO₂+ ${}^{1}O_{2}$ involved in the singlet reaction of HO₂ + NO₂ Energies (kcal·mol⁻¹) computed at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level include zero-point energy correction.

Fig. S3 Geometrical parameters for the triplet naked reaction of HO₂+NO₂ optimized at the

CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory

Fig. S4 Less favorable schematic energy diagram of the formation of (a)cis-HONO+ ${}^{3}O_{2}$; (b) trans-HONO+ ${}^{3}O_{2}$ involved in the triplet reaction of HO₂ + NO₂ Energies (kcal·mol⁻¹) computed at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level include zero-point energy correction.

Fig S5 The geometrical structures of the optimized transitions state, intermediates, and complexes involving the H_2O ···HO₂+NO₂ reaction

Fig S6 Less favorable schematic energy diagrams of the formation of (a) cis-HONO^{...}H₂O+³O₂; (b) trans-HONO^{...}H₂O+³O₂ and (c) HNO₂^{...}H₂O+³O₂ in the H₂O^{...}HO₂+NO₂ reaction

Fig S7 The geometrical structures of the optimized transitions state, intermediates, and complexes involving the HO_2 ···H $_2O$ +NO $_2$ reaction and Schematic energy diagrams of the formation of HNO_3 +H $_2O_2$ in the H_2O ···HO $_2$ +NO $_2$ reaction

Fig S8 Less favorable schematic energy diagrams of the formation of (a) cis-HONO+ $H_2O+^3O_2$; (b) trans-HONO+ $H_2O+^3O_2$ in the HO₂···H₂O+NO₂ reaction

Fig. S9 The geometrical structures of the optimized transitions state, intermediates, and complexesinvolvingthe $NO_2 \cdots H_2O + HO_2$ reaction

Species	T_1	Species	T_1	Species	T_1
cis-HONO	0.0115	³ O ₂	0.0176	IMW1b1	0.0274
trans-HONO	0.0117	H ₂ O•••HO ₂	0.0210	TSW1b1	0.0400
HNO ₂	0.0203	IMW1a	0.0214	IMFW1b	0.0185
$^{1}O_{2}$	0.0152	TSW1a	0.0330	IMW2b	0.0267
NO ₂	0.0244	IMW1a1	0.0214	TSW2b	0.0477
H ₂ O	0.0101	TSW1a1	0.0330	TSW2b1	0.0469
HO ₂	0.0301	IMW1a2	0.0273	IMFW2b	0.0250
¹ TSa	0.0194	TSW1a2	0.0360	TSW3b	0.0364
¹ TSa1	0.0194	TSW1a3	0.0358	IMFW3b	0.0210
¹ TSb	0.0193	IMW2a	0.0261	NO ₂ •••H ₂ O	0.0231
¹ TSb1	0.0149	TSW2a	0.0417	IMW1c	0.0273
¹ TSc	0.0476	IMW2a1	0.0261	TSWIc	0.0392
IMa	0.0298	TSW2a1	0.0412	IMW2c	0.0255
TSa	0.0369	TSW2a2	0.0408	TSW2c	0.0481
TSa1	0.0354	IMW2a2	0.0266	TSW3c	0.0420
IMb	0.0294	TSW2a3	0.0419	TSW3c1	0.0418
TSb	0.0394	TSW3a	0.0329	TSW4b	0.0383
IMb1	0.0288	TSW3a1	0.0328	IMFW4b	0.0170
TSb1	0.0390	TSW3a2	0.0325	TSW4b1	0.0377
TSc	0.0312	TSW3a3	0.0325	IMFW4b1	0.0169
cis-HONO••• H ₂ O	0.0189	НО2•••Н2О	0.0245		
trans-HONO•••H ₂ O	0.0188	IMW1b	0.0275		
HONO•••H ₂ O	0.0180	TSW1b	0.0400		

Table S1. *T*1 diagnostic values for the species that involved in the title reactions of $NO_2 + HO_2$ without and with a water molecule

Species	ZPE	S	ΔE	$\Delta(E+ZPE)$	Δ <i>H</i> (298)	$\Delta G(298)$
HO ₂ +NO ₂	14.32	111.98	0.00	0.00	0.00	0.00
¹ TSa	13.98	73.97	26.44	26.10	-5.36	5.97
¹ TSa1	13.98	73.97	26.44	26.09	-5.36	5.97
Trans-HONO+1O2	14.93	106.31	-0.96	-0.36	-4.10	-2.41
¹ TSb	13.94	69.87	24.35	23.96	-5.78	6.77
¹ TSb1	13.94	69.87	24.35	23.96	-5.79	6.77
Cis-HONO+ $^{1}O_{2}$	14.88	106.11	-0.46	0.09	-4.19	-2.44
¹ TSc	14.14	73.02	22.35	22.17	-5.26	6.35
$HNO_2 + {}^1O_2$	15.98	105.24	7.17	8.83	-3.22	-1.21
IMa	15.29	92.47	-2.89	-1.92	-2.78	3.04
TSa	13.00	75.42	23.73	22.41	-6.35	4.55
TSa1	12.84	80.72	13.59	12.11	-6.18	3.14
Trans -						
$HONO+^{3}O_{2}$	14.94	108.39	-30.99	-30.37	-3.82	-2.76
IMb	15.50	82.19	-3.81	-2.64	-3.34	5.55
TSb	13.62	76.16	9.82	9.11	-5.69	4.99
IMb1	15.24	86.40	-2.76	-1.84	-3.32	4.31
TSb1	12.81	81.47	21.27	19.75	-6.14	2.95
Cis -HONO+ $^{3}O_{2}$	14.89	108.19	-30.49	-29.93	-3.92	-2.79
TSc	13.08	79.98	9.60	8.35	-6.01	3.53
$HNO_2 + {}^3O_2$	16.00	107.33	-22.86	-21.18	-2.95	-1.56

Table S2 Zero-point energy (ZPE, in kcal·mol⁻¹), entropies (S in cal·mol⁻¹·k⁻¹), relative energies (ΔE and $\Delta(E + ZPE)$ in kcal·mol⁻¹), enthalpies (ΔH (298) in kcal·mol⁻¹), and free energies (ΔG (298) in kcal·mol⁻¹) for the HO₂ + NO₂ reaction ^{*a*}

^a ZPE and S values obtained at B3LYP/aug -cc-pVTZ level. The energy values are obtained at CCSD(T)/aug -cc-

pVTZ level whereas the H and G corrections are taken from the B3LYP/aug -cc-pVTZ values.

(ΔE and $\Delta(E + ZPE)$ in kcal·mol⁻¹), enthalpies ($\Delta H(298)$ in kcal·mol⁻¹), and free energies ($\Delta G(298)$) in kcal·mol⁻¹) for water-catalyzed the main channel of $HO_2 + NO_2$ reaction occurring through H₂O···HO₂+ NO₂ reaction ZPE Species S ΔE $\Delta(E+ZPE)$ Δ*H*(298) $\Delta G(298)$ H₂O•••HO₂+NO₂ 30.62 128.99 0.00 0.00 0.00 0.00

Table S3 Zero point energy (ZPE, in kcal·mol⁻¹), entropies (S in cal·mol⁻¹·k⁻¹), relative energies

IMW1a	30.87	99.56	-1.15	-0.90	0.20	8.98
TSW1a	28.55	91.28	23.86	21.79	-2.97	8.27
IMW1a1	30.86	99.56	-1.22	-0.98	0.20	8.98
TSW1a1	28.55	91.29	23.86	21.79	-2.97	8.27
IMW1a2	30.76	113.80	-1.87	-1.73	0.90	5.43
TSW1a2	27.97	97.79	30.19	27.53	-3.16	6.14
TSW1a3	27.75	97.63	29.34	26.47	-3.38	5.97
cis-HONO•••H2O+ ³ O ₂	29.94	126.45	-28.77	-29.45	-0.40	0.36
IMW2a	31.16	101.84	-3.78	-3.24	0.89	8.99
TSW2a	28.79	89.31	17.39	15.55	-2.82	9.01
IMW2a1	31.17	101.85	-3.84	-3.29	0.90	8.99
TSW2a1	29.00	90.12	17.42	15.80	-2.53	9.13
TSW2a2	28.37	93.88	29.34	27.09	-2.96	7.51
IMW2a2	30.80	105.38	-2.35	-2.18	0.34	7.38
TSW2a3	28.38	93.88	29.33	27.08	-2.95	7.51
<i>trans</i> -HONO•••H2O+ ³ O ₂	29.80	130.32	-29.19	-30.02	-0.25	-0.65
TSW3a	27.95	93.26	33.69	31.01	-3.38	7.27
TSW3a1	27.56	99.37	38.21	35.14	-3.56	5.27
TSW3a2	27.95	93.26	33.67	30.99	-3.38	7.27
TSW3a3	27.56	99.36	38.21	35.14	-3.56	5.28
HONO•••H2O $+^{3}O_{2}$	30.40	133.81	-21.52	-21.74	0.42	-1.02

^{*a*} ZPE and S values obtained at B3LYP/aug -cc-pVTZ level. The energy values are obtained at CCSD(T)/aug -ccpVTZ level whereas the H and G corrections are taken from the B3LYP/aug -cc-pVTZ value.

Table S4 Zero point energy (ZPE, in kcal·mol⁻¹), entropies (S in cal·mol⁻¹·k⁻¹), relative energies (ΔE and $\Delta(E + ZPE)$ in kcal·mol⁻¹), enthalpies (ΔH (298) in kcal·mol⁻¹), and free energies (ΔG (298) in kcal·mol⁻¹) for water-catalyzed the main channel of HO₂ + NO₂ reaction occurring through HO₂…H₂O + NO₂ reaction

Species	ZPE	S	ΔE	$\Delta(E+ZPE)$	Δ <i>H</i> (298)	$\Delta G(298)$
HO ₂ •••H ₂ O+NO ₂	29.55	138.10	0.00	0.00	0.00	0.00
IMW1b	30.06	117.20	-3.15	-2.65	0.96	7.16
TSW1b	27.10	108.10	14.70	12.25	-2.68	6.27
IMW1b1	29.97	112.10	-3.17	-2.75	0.36	8.10
TSW1b1	27.08	108.70	14.70	12.24	-2.68	6.08
IMFW1b	30.23	107.74	-35.30	-34.62	-0.12	8.92
cis-HONO+H ₂ O+ ³ O ₂	28.22	153.3	-27.24	-21.78	-1.67	-6.21
IMW2b	30.25	113.70	-4.41	-3.71	1.03	8.29
TSW2b	27.77	106.10	11.30	9.52	-2.18	7.34
TSW2b1	30.14	109.10	-4.30	-3.72	0.42	9.06
IMFW2b	29.04	109.64	-30.02	-30.53	-0.94	7.54
trans-HONO+H ₂ O+ ³ O ₂	28.27	153.50	-27.73	-22.18	-1.57	-6.17
TSW3b	27.24	105.90	10.13	7.81	-2.48	7.12
IMFW3b	30.52	94.42	-22.62	-21.65	-0.76	12.26
HONO+H ₂ O+ ³ O ₂	29.33	152.4	-19.60	-13.17	-0.69	-4.97
TSW4b	31.37	80.17	24.90	26.73	-0.52	16.73
IMFW4b	33.87	94.29	-22.35	-18.03	3.07	16.12
TSW4b1	31.10	80.65	26.31	27.85	-0.78	16.34
IMFW4b1	34.50	89.06	-27.02	-22.08	3.27	17.89
HNO ₃ +H ₂ O ₂	33.01	119.40	-17.59	-14.12	1.77	7.35

^{*a*} ZPE and S values obtained at B3LYP/aug -cc-pVTZ level. The energy values are obtained at CCSD(T)/aug -cc-pVTZ level whereas the H and G corrections are taken from the B3LYP/aug -cc-pVTZ value.

Table S5 Zero point energy (ZPE, in kcal·mol⁻¹), entropies (S in cal·mol⁻¹·k⁻¹), relative energies (ΔE and $\Delta(E + ZPE)$ in kcal·mol⁻¹), enthalpies (ΔH (298) in kcal·mol⁻¹), and free energies (ΔG (298) in kcal·mol⁻¹) for water-catalyzed the main channel of HO₂ + NO₂ reaction occurring through NO₂…H₂O+HO₂ reaction

Species	ZPE	S	ΔE	$\Delta(E+ZPE)$	Δ <i>H</i> (298)	$\Delta G(298)$
NO ₂ •••H ₂ O+HO ₂	28.52	143.80	0.00	0.00	0.00	0.00
IMW1c	30.76	113.80	-9.91	-7.68	1.79	10.73
TSWIc	27.16	109.90	12.97	11.60	-2.00	8.10
<i>cis</i> -HONO•••H ₂ O+ ³ O ₂	29.94	126.40	-36.81	-35.39	0.49	5.66
IMW2c	29.66	110.00	-3.63	-2.49	0.73	10.80
TSW2c	27.97	103.70	8.88	8.33	-1.54	10.42
<i>trans</i> -HONO•••H ₂ O+ ³ O ₂	29.80	130.30	-37.23	-35.96	0.65	4.65
TSW3c	27.52	110.80	10.39	9.38	-1.64	8.19
TSW3c1	27.56	110.00	10.31	9.35	-1.61	8.45
HONO••• $H_2O+^3O_2$	30.40	133.80	-29.56	-27.68	1.31	4.28

^a ZPE and S values obtained at B3LYP/aug -cc-pVTZ level. The energy values are obtained at CCSD(T)/aug -cc-

pVTZ level whereas the H and G corrections are taken from the B3LYP/aug -cc-pVTZ value.

<i>T</i> /K	$k_{\rm R1}$	k _{R2}	<i>k</i> _{R3}	k _R
240	2.54E-17	1.95E-15	3.66E-15	5.64E-15
250	2.28E-17	1.57E-15	2.94E-15	4.53E-15
278	1.80E-17	9.39E-16	1.75E-15	2.71E-15
288	1.68E-17	8.07E-16	1.49E-15	2.31E-15
298	1.59E-17	7.02E-16	1.29E-15	2.01E-15
308	1.51E-17	6.18E-16	1.13E-15	1.76E-15
325	1.40E-17	5.06E-16	9.22E-16	1.44E-15
375	1.21E-17	3.15E-16	5.73E-16	9.00E-16
425	1.13E-17	2.26E-16	4.09E-16	6.46E-16

Table S6 Rate constants (cm³·molecules⁻¹·s⁻¹) for main reaction of the HO₂ + NO₂ reaction within the temperature range of 240.0-425.0 K

 k_{R1} is the rate constant of Channel R1; k_{R2} is the rate constant of Channel R2, and k_{R3} is the rate constant of Channel R3.

	ee anna anna	e #8== ==2 e			p	2	,	
<i>T</i> /K	k _{RW1a1}	k _{RW1a2}	k _{RW1a3}	$k_{\rm RW1a4}$	k _{RW1a}	k _{RW2a1}	k _{RW2a2}	k _{RW2a3}
240	9.56E-28	9.56E-27	3.59E-38	6.94E-31	1.05E-26	1.73E-22	8.33E-32	8.33E-32
250	2.52E-27	2.52E-26	4.30E-37	1.42E-30	2.77E-26	3.94E-22	2.70E-31	2.70E-31
278	4.00E-26	4.00E-25	1.98E-34	1.37E-29	4.40E-25	3.81E-21	8.76E-30	8.76E-30
288	1.06E-25	1.06E-24	1.36E-33	3.31E-29	1.17E-24	8.26E-21	3.11E-29	3.11E-29
298	2.78E-25	2.78E-24	8.33E-33	8.20E-29	3.06E-24	1.74E-20	1.10E-28	1.10E-28
308	7.12E-25	7.11E-24	4.57E-32	2.07E-28	7.82E-24	3.58E-20	3.77E-28	3.77E-28
325	3.29E-24	3.29E-23	6.56E-31	1.01E-27	3.62E-23	1.13E-19	2.86E-27	2.86E-27
375	1.74E-22	1.74E-21	4.35E-28	8.57E-26	1.91E-21	2.12E-18	5.53E-25	5.53E-25
425	4.39E-21	4.39E-20	6.61E-26	3.85E-24	4.83E-20	2.22E-17	3.92E-23	3.92E-23
<i>T</i> /K	k _{RW2a4}	k _{RW2a}	k _{RW3a1}	k _{RW3a2}	k _{RW3a3}	k _{RW3a4}	k _{RW3a}	
240	3.13E-30	1.73E-22	4.46E-32	4.60E-32	3.13E-34	3.14E-34	9.12E-32	
250	8.93E-30	3.94E-22	1.14E-31	1.18E-31	9.40E-34	9.45E-34	2.34E-31	
278	1.95E-28	3.81E-21	1.80E-30	1.85E-30	2.35E-32	2.36E-32	3.70E-30	
288	6.05E-28	8.26E-21	5.02E-30	5.16E-30	7.73E-32	7.77E-32	1.03E-29	
298	1.87E-27	1.74E-20	1.42E-29	1.46E-29	2.59E-31	2.60E-31	2.93E-29	
308	5.73E-27	3.58E-20	4.06E-29	4.18E-29	8.79E-31	8.83E-31	8.41E-29	
325	3.65E-26	1.13E-19	2.44E-28	2.51E-28	7.06E-30	7.09E-30	5.09E-28	
375	4.87E-24	2.12E-18	3.79E-26	3.88E-26	2.45E-27	2.46E-27	8.16E-26	
425	2.71E-22	2.22E-17	2.98E-24	3.04E-24	3.76E-25	3.78E-25	6.77E-24	

Table S7 Rate constants (cm³·molecules⁻¹·s⁻¹) for main reaction of the HO₂ + NO₂ reaction occurring through H₂O···HO₂+ NO₂ reaction within the temperature range of 240.0–425.0K

 $k_{\text{RW1a}} (k_{\text{RW1a}} = k_{\text{RW1a1}} + k_{\text{RW1a2}} + k_{\text{RW1a3}} + k_{\text{RW1a4}})$ is the rate constant of Channel RW1a; $k_{\text{RW2a}} (k_{\text{RW2a}} = k_{\text{RW2a1}} + k_{\text{RW2a2}} + k_{\text{RW2a3}} + k_{\text{RW2a4}})$ is the rate constant of Channel RW2a, and $k_{\text{RW3a}} (k_{\text{RW3a}} = k_{\text{RW3a1}} + k_{\text{RW3a2}} + k_{\text{RW3a3}} + k_{\text{RW3a4}})$ is the rate constant of Channel RW2a.

unoug		1102100000	i within the te	inperature rung	50 01 2 10:0 12	5.01L	
<i>T</i> /K	$k_{\rm RW1b1}$	$k_{\rm RW1b2}$	$k_{\rm RW1b}$	$k_{\rm RW2b1}$	$k_{\rm RW2b2}$	$k_{\rm RW2b}$	k _{RW3b}
240	8.46E-14	2.66E-14	1.11E-13	1.98E-12	1.35E-09	1.35E-09	5.42E-12
250	9.71E-14	3.73E-14	1.34E-13	2.37E-12	6.14E-10	6.16E-10	8.30E-12
278	1.91E-13	1.06E-13	2.97E-13	4.47E-12	1.76E-10	1.80E-10	2.58E-11
288	2.61E-13	1.58E-13	4.20E-13	5.80E-12	1.47E-10	1.53E-10	3.78E-11
298	3.60E-13	2.38E-13	5.99E-13	7.62E-12	1.35E-10	1.43E-10	5.46E-11
308	5.18E-13	3.58E-13	8.78E-13	1.01E-11	1.33E-10	1.43E-10	7.79E-11
325	9.51E-13	7.18E-13	1.67E-12	1.63E-11	1.47E-10	1.63E-10	1.39E-10
375	5.42E-12	5.01E-12	1.05E-11	6.56E-11	2.93E-10	3.59E-10	6.17E-10
425	2.53E-11	2.75E-11	5.33E-11	2.31E-10	6.63E-10	8.94E-10	2.14E-09
<i>T</i> /K	k _{RW4b1}	$k_{\rm RW4b2}$	$k_{\rm RW4b}$				
240	1.75E-34	2.85E-35	2.04E-34				
250	1.41E-33	2.42E-34	1.65E-33				
278	2.25E-31	4.48E-32	2.70E-31				
288	1.09E-30	2.28E-31	1.32E-30				
298	4.75E-30	1.05E-30	5.80E-30				
308	1.89E-29	4.37E-30	2.33E-29				
325	1.63E-28	4.07E-29	2.04E-28				
375	3.03E-26	9.22E-27	3.95E-26				
425	1.69E-24	6.04E-25	2.29E-24				

Table S8 Rate constants (cm³·molecules⁻¹·s⁻¹) for main reaction of the HO₂ + NO₂ reaction occurring through HO₂···H₂O + NO₂ reaction within the temperature range of 240.0-425.0K

 k_{RW1b} ($k_{\text{RW1b}} = k_{\text{RW1b1}} + k_{\text{RW1b2}}$) is the rate constant of Channel RW1b; k_{RW2b} ($k_{\text{RW2b}} = k_{\text{RW2b1}} + k_{\text{RW2b2}}$) is the rate constant of Channel RW2b; k_{RW3b} is the rate constant of Channel RW3b, and k_{RW4} ($k_{\text{RW4}} = k_{\text{RW4b1}} + k_{\text{RW4b2}}$) is the rate constant of Channel RW3b.

unough i	unough NO ₂ 1120 +1102 reaction within the temperature range of 240.0 425.0 K									
Т	$k_{\rm RW1c}$	$k_{\rm RW2c}$	k _{RW3c1}	k _{RW3c2}	k _{RW3c}					
240	1.27E-15	1.39E-13	1.30E-14	9.44E-15	2.25E-14					
250	2.25E-15	1.92E-13	2.85E-14	2.07E-14	4.91E-14					
278	1.15E-14	4.85E-13	1.94E-13	1.40E-13	3.34E-13					
288	2.03E-14	6.74E-13	3.54E-13	2.55E-13	6.09E-13					
298	3.52E-14	9.32E-13	6.23E-13	4.47E-13	1.07E-12					
308	5.99E-14	1.28E-12	1.06E-12	7.59E-13	1.82E-12					
325	1.41E-13	2.16E-12	2.44E-12	1.74E-12	4.19E-12					
375	1.28E-12	8.59E-12	1.90E-11	1.35E-11	3.25E-11					
425	7.65E-12	2.76E-11	9.55E-11	6.72E-11	1.63E-10					

Table S9 Rate constants (cm³·molecules⁻¹·s⁻¹) for main reaction of the HO₂ + NO₂ reaction occurring through NO₂···H₂O +HO₂ reaction within the temperature range of 240.0–425.0 K

 k_{RW1c} is the rate constant of Channel RW1c; k_{RW2c} is the rate constant of Channel RW2c, and k_{RW3c} ($k_{\text{RW3c}} = k_{\text{RW3c1}} + k_{\text{RW3c2}}$) is the rate constant of Channel RW3c.