Electronic Supplementary Information for

Molecular material based on electropolymerized cobalt macrocycle for electrocatalytic hydrogen evolution

Stéphane Rioual,¹ Benoit Lescop,¹ François Quentel,² Frederic Gloaguen^{2,*} ¹LMB EA 4522, ²CEMCA UMR 6521, CNRS, Université de Bretagne Occidentale, Brest, France E-mail: fgloague@univ-brest.fr (FG)

Fig. S1. UV-vis absorption spectra of CoTAA in solution in MeCN showing a sharp absorption band at 365 nm and a large absorption band around 505 nm, consistent with previously reported data.{Bailey, 1986 #391}

Fig. S2. Voltammograms of CoTAA in N₂-purged Bu₄NPF₆/PhCN. The scan rate was at 0.1 V s⁻¹ and the electrode surface area 0.071 cm². The redox events at $E_{1/2} \sim -1.80$ V and -0.28 V are metal centered and respectively ascribed to the Co(II)/Co(I) and Co(III)/Co(II) couples, while that at $E_{1/2} \sim 0.42$ V is ligand centered.

Fig. S3. Voltammograms recorded upon continuous potential scanning at 0.1 V s^{-1} at a GC electrode of ca 0.071 cm² in surface area immersed in a solution of about 2 mM CoTAA in 0.1 M Bu₄NPF₆/PhCN: 2nd scan (black trace), 10th scan (red trace), 20th scan (blue trace) and 30th scan (green trace).

Fig. S5. XPS survey spectrum of a poly-CoTAA film electropolymerized on an Au-coated glass slide electrode.

Fig. S6. O(1s) and C(1s) XPS signals of poly-CoTAA film (black tace) and Co(II)-tetraphenylporphyrin (red trace) used as a reference compound.

Fig. S7. Voltammograms recorded at 5 mV s⁻¹ and rotation rates ranging from 100 to 500 rpm at a poly-CoTAA modified RDE in 0.1 M NaCl and 6 mM acetate buffer (pH 4.6). The inset shows the corresponding Levich plot: a slope of 0.0354 mA cm⁻² rpm^{-1/2} was calculated by linear regression (R² = 0.999).

Fig. S8. Charge passed versus time for electrolysis at -1.20 V vs. SCE of 0.1 M NaCl containing about 1 mM HCl. The working electrode is a poly-CoTAA modified GC electrode rotating at 500 rpm. The total charge passed during electrolysis of 2 mL of solution is $Q_{tot} = 0.128$ C. This corresponds to the consumption of $Q_{tot}/F \times 500 = 6.63 \times 10^{-4}$ M of H⁺. In the meantime, pH has increased from 3.10 to 3.70 corresponding to a decrease of $10^{-3.1} - 10^{-3.70} = 5.95 \times 10^{-4}$ M of H⁺. Comparison of these results allows us to conclude that poly-CoTAA works at Faradaic efficiency of 5.95/6.63 = 90%.

Fig. S9. Tafel plot obtained from the voltammogram recorded at a poly-CoTAA modified RDE in 6 mM acetate buffer solution at pH 4.6 (see Fig. 3). The red line was calculated by linear regression: $\eta = -0.1225 \times \log [-i_k] - 0.9397$; R² = 0.999.

Fig. S1. UV-vis absorption spectra of CoTAA in solution in MeCN showing a sharp absorption band at 365 nm and a large absorption band around 505 nm, consistent with previously reported data.{Bailey, 1986 #391}

Fig. S2. Voltammograms of CoTAA in N₂-purged Bu₄NPF₆/PhCN. The scan rate was at 0.1 V s⁻¹ and the electrode surface area 0.071 cm². The redox events at $E_{1/2} \sim -1.80$ V and -0.28 V are metal centered and respectively ascribed to the Co(II)/Co(I) and Co(III)/Co(II) couples, while that at $E_{1/2} \sim 0.42$ V is ligand centered.

Fig. S3. Voltammograms recorded upon continuous potential scanning at 0.1 V s^{-1} at a GC electrode of ca 0.071 cm² in surface area immersed in a solution of about 2 mM CoTAA in 0.1 M Bu₄NPF₆/PhCN: 2nd scan (black trace), 10th scan (red trace), 20th scan (blue trace) and 30th scan (green trace).

Fig. S4. Voltammograms of a poly-CoTAA modified electrode in N_2 -purged $Bu_4NPF_6/MeCN$. The scan rate was at 0.1 V s⁻¹ and the electrode surface area 0.071 cm².

Fig. S5. XPS survey spectrum of a poly-CoTAA film electropolymerized on an Au-coated glass slide electrode (see Fig. 1).

Fig. S6. O(1s) and C(1s) XPS signals of poly-CoTAA film (black tace) and Co(II)-tetraphenylporphyrin (red trace) used as a reference compound.

Fig. S7. Voltammograms recorded at 5 mV s⁻¹ and rotation rates ranging from 100 to 500 rpm at a poly-CoTAA modified RDE in 0.1 M NaCl and 6 mM acetate buffer (pH 4.6). The inset shows the corresponding Levich plot: a slope of 0.0354 mA cm⁻² rpm^{-1/2} was calculated by linear regression (R² = 0.999).

Fig. S8. Charge passed versus time for electrolysis at -1.20 V vs. SCE of 0.1 M NaCl containing about 1 mM HCl. The working electrode is a poly-CoTAA modified GC electrode rotating at 500 rpm. The total charge passed during electrolysis of 2 mL of solution is $Q_{tot} = 0.128$ C. This corresponds to the consumption of $Q_{tot}/F \times 500 = 6.63 \times 10^{-4}$ M of H⁺. In the meantime, pH has increased from 3.1 to 3.7 corresponding to a decrease of $10^{-3.1} - 10^{-3.7} = 5.95 \times 10^{-4}$ M of H⁺. Comparison of these results allows us to conclude that poly-CoTAA works at Faradaic efficiency of 5.95/6.63 = 90%.

Fig. S9. Tafel plot obtained from the voltammogram recorded at a poly-CoTAA modified RDE in 6 mM acetate buffer solution at pH 4.6 (see Fig. 3). The red line was calculated by linear regression: $\eta = -0.1225 \times \log [-i_k] - 0.9397$; R² = 0.999.