ELECTRONIC SUPPLEMENTARY INFORMATION:

Cholinium-Amino Acid based Ionic Liquids: a new method of synthesis and physico-chemical characterization.

Serena De Santis, Giancarlo Masci,* Francesco Casciotta, Ruggero Caminiti, Eleonora Scarpellini, Marco Campetella, Lorenzo Gontrani.

Sapienza University of Rome, Department of Chemistry, Piazzale A. Moro 5, I-00185 Rome, Italy

* giancarlo.masci@uniroma1.it

Table of contents

- 1. Structure of the cation and anions of [Ch][AA]ILs
- 2. ¹H NMR spectra for amino acid ionic liquids
- 3. ¹³C NMR spectra for amino acid ionic liquids
- 4. Fitting parameters
- 5. Refractive index

1. Structure of the cation and anions of [Ch][AA]ILs

Cation

2. ¹H NMR spectra for amino acid ionic liquids

S 1 ¹H NMR spectra for [Ch][His] in D_2O at 25°C. The 1:1 stoichiometry of the IL is confirmed by the integrals ratio.

S 2 ¹H NMR spectra for [Ch][Leu] in D_2O at 25°C. Even if the excess of amino acid above the equivalence point has to be reduced due to solubility problems, 1:1 stoichiometry can be achieved.

[Ch][Gly]. ¹H NMR (300 MHz, D₂O) δ: 3.19 (s, 2H, CH₂-N), 3.22 (s, 9H, CH₃, CH₃, CH₃), 3.52 – 3.55 (m, 2H, CH₂), 4.06 – 4.10 (m, 2H, CH₂).

[Ch][Ala]. ¹H NMR (300 MHz, D₂O) δ: 1.23 (d, 3H, CH₃), 3.20 (s, 9H, CH₃, CH₃, CH₃), 3.31 (q, 1H, CH-N), 3.47 – 3.56 (m, 2H, CH₂), 4.01 – 4.08 (m, 2H, CH₂).

[Ch][Nva]. ¹H NMR (300 MHz, D₂O) δ : 0.91 (t, 3H, CH₃), 1.24 – 1.40 (m, 2H, CH₂), 1.49 – 1.57 (m, 2H, CH₂), 3.20 (s, 9H, CH₃, CH₃, CH₃), 3.26 (m, 1H, CH-N), 3.51 (apparent t, 2H, CH₂), 4.02 – 4.09 (m, 2H, CH₂).

[Ch][Leu]. ¹H NMR (300 MHz, D2O) δ: 0.92 (t, 6H, CH₃, CH₃), 1.32 – 1.56 (m, 2H, CH₂), 1.57 – 1.72 (m, 1H, CH), 3.21 (s, 9H, CH₃, CH₃, CH₃), 3.30 (q, 1H, CH-N), 3.48 – 3.56 (apparent t, 2H, CH₂), 4.05 – 4.09 (m, 2H, CH₂).

[Ch][Ile]. ¹H NMR (300 MHz, D_2O) δ : 0.86 – 0.92 (t, 3H, CH₃; d, 3H, CH₃, overlap), 1.09 – 1.18 (m, 1H, CH2), 1.38 – 1.44 (m, 1H, CH₂), 1.64 – 1.70 (m, 1H, CH), 3.10 (d, 1H, CH-N), 3.20 (s, 9H, CH₃, CH₃, CH₃), 3.51 (apparent t, 2H, CH₂), 4.03 – 4.07 (m, 2H, CH₂).

[Ch][Nle]. ¹H NMR (300 MHz, D₂O) δ: 0.88 (t, 3H, CH₃), 1.20 – 1.38 (m, 4H, CH₂, CH₂), 1.51 – 1.66 (m, 2H, CH₂), 3.20 (s, 9H, CH₃, CH₃, CH₃), 3.27 (m, 1H, CH-N), 3.51 (apparent t, 2H, CH₂), 4.02 – 4.09 (m, 2H, CH₂).

[Ch][Ser]. ¹H NMR (300 MHz, D₂O) δ: 3.20 (s, 9H,CH₃, CH₃, CH₃), 3.34 (t, 1H, CH-N), 3.53 (apparent t, 2H, CH₂), 3.72 (dd, 2H, CH₂), 4.02 – 4.09 (m, 2H, CH₂).

[Ch][Lys]. ¹H NMR (300 MHz, D₂O) δ: 1.27 – 1.42 (m, 2H, CH₂), 1.42 – 1.54 (m, 2H, CH₂), 1.55 – 1.67 (m, 2H, CH₂), 2.69 (t, 2H, CH₂), 3.22 (s, 10H, CH₃, CH₃, CH₃, CH₃, CH₃, SH₂), 3.52 (apparent t, 2H, CH₂), 3.87 – 4.13 (m, 2H, CH₂).

[Ch][Cys]. ¹H NMR (300 MHz, D₂O) δ : 2.73 – 2.91 (dd, 2H, CH₂), 3.20 (s, 9H, CH₃, CH₃, CH₃), 3.50 – 3.55 (t, 1H, CH-N), 3.52 (apparent t, 2H, CH₂), 4.03 – 4.09 (m, 2H, CH₂).

[Ch][Met]. ¹H NMR (300 MHz, D₂O) δ: 1.72 – 1.99 (m, 1H, CH₂), 2.11 (s, 3H, CH₃), 2.56 (t, 2H, CH₂), 3.20 (s, 9H, CH3, CH3, CH3), 3.34 (t, 1H, CH-N), 3.48 – 3.55 (apparent t, 2H, CH₂), 4.05 – 4.10 (m, 2H, CH₂).

[Ch][Pro]. ¹H NMR (300 MHz, D₂O) δ: 1.69 – 1.80 (m, 3H, CH₂, CH₂), 2.06 – 2.18 (m, 1H, CH2), 2.74 – 2.87 (m, 1H, CH₂-N), 3.01 – 3.14 (m, 1H, CH₂-N), 3.20 (s, 9H, CH₃, CH₃, CH₃), 3.47 – 4.47 (m, 3H, CH-N, CH₂), 4.03 – 4.08 (m, 2H, CH₂).

[Ch][His]. ¹H NMR (300 MHz, D₂O) δ: 2.79–2.84 (m, 1H, CH₂), 2.94–2.99 (m, 1H, CH₂), 3.18 (s, 9H, CH₃, CH₃, CH₃), 3.46–3.55 (m, 3H, CH₂, CH-N), 4.02–4.06 (m, 2H, CH₂), 6.94 (s, 1H, =CH), 7.69 (s, 1H, =CH).

[Ch][Phe]. ¹H NMR (300 MHz, D₂O) δ: 2.85 – 2.99 (m, 1H, CH₂), 3.02 – 3.14 (m, 1H, CH₂), 3.21 (s, 9H, CH₃, CH₃, CH₃), 3.51 (m, 2H, CH₂), 3.56 (t, 1H, CH-N), 4.05 – 4.09 (m, 2H, CH₂), 7.32 – 7.50 (m, 5H, C₆H₅).

[Ch][Hph]. ¹H NMR (300 MHz, D₂O) δ: 1.80 – 2.00 (m, 2H, CH₂), 2.61 – 2.76 (m, 2H, CH₂), 3.21 (s, 9H, CH₃, CH₃, CH₃), 3.31(t, 1H, CH-N), 3.50 (m, 2H, CH₂), 4.01 – 4.09 (m, 2H, CH₂), 7.26 – 7.50 (m, 5H, C₆H₅).

3. ¹³C NMR spectra for amino acid ionic liquids

S 3 ¹³C NMR spectra for [Ch][Cys] in D_2O at 25°C. The absence of a signal for a C bound to S-S demonstrates that no reductions of Cysteine occurred during the [Ch][Cys] preparation process.

10 0 90 80 ppm

S4 13 C NMR spectra for [Ch][Gly] in D₂O at 25°C.

S8 ¹³C NMR spectra for [Ch][Ile] in D_2O at 25°C.

S10 13 C NMR spectra for [Ch][Ser] in D₂O at 25°C.

S11 ^{13}C NMR spectra for [Ch][Lys] in D₂O at 25°C.

S12 13 C NMR spectra for [Ch][Met] in D₂O at 25°C.

S12 13 C NMR spectra for [Ch][His] in D₂O at 25°C.

4. Fitting parameters

	A ₂	A ₃	R	σ _r		
ChGly	1.56747	-0.000221	0.994671	0.000264		
ChAla	1.57642	-0.0002705	0.998269	0.000184		
ChNva	1.56079	-0.0002392	0.998244	0.000164		
ChLeu	1.56469	-0.0002564	0.999021	0.000132		
ChIle	1.52551	-0.0001224	0.992725	0.000172		
ChNle	1.56057	-0.0002488	0.999725	6.78E-05		
ChSer	1.57008	-0.0002143	0.997656	0.000168		
ChLys	1.56365	-0.0001642	0.983666	0.000342		
ChCys	1.59782	-0.0002345	0.999253	0.000103		
ChMet	1.60871	-0.0002914	0.997793	0.000220		
ChPro	1.60905	-0.0003406	0.984309	0.000700		
ChHis	1.60550	-0.0002238	0.999695	6.20E-05		
ChPhe	1.61804	-0.0002583	0.992489	0.000363		
ChHph	1.61975	-0.0002741	0.999671	7.90E-05		
$\sigma_r = \sqrt{\frac{\sum_{i} \left[\left(n_D^{exp} - n_D^{cal} \right) / n_D^{cal} \right]^2}{n - v}}_{\text{where } n \text{ and } v \text{ are the number of experimental points and adjustable}}$						

Table S1 Fitting Parameters Values of eq. 4 and standard deviations σ_r

	A ₄	A ₅	A ₆	R	σr
[Ch][Gly]	4.28E+06	1383.7	169.99	0.99995	0.02076
[Ch][Ala]	3.89E+06	1359.3	173.39	0.99995	0.02238
[Ch][Ser]	1.40E+06	1238.9	188.91	0.99997	0.04134
[Ch][Lys]	3.17E+07	2398.9	160.23	0.999999	0.04013
[Ch][Pro]	1.41E+06	1300.9	191.70	0.99997	0.05884
[Ch][Met]	3.17E+07	2278.2	129.13	0.99994	0.04125
[Ch][Cys]	2.69E+04	954.71	197.25	0.99926	0.08028
[Ch][Phe]	9.97E+05	1128.3	207.43	0.999999	0.11121
[Ch][His]	7.10E+05	1396.0	206.88	0.99962	0.23676
[Ch][Leu]	2.67E+06	1472.6	178.15	0.999999	0.01399
[Ch][Ile]	1.55E+06	1387.8	181.97	0.99997	0.07411
[Ch][Nle]	3.29E+05	910.09	201.92	0.99990	0.14091
[Ch][Nva]	2.26E+06	1389.3	174.18	0.999999	0.02196
[Ch][Hph]	2.15E+06	1395.5	190.06	0.99997	0.10141

Table S2 Fitting Parameters Values of eq. 5 and standard deviations σ_r

$$\sigma_r = \sqrt{\frac{\sum_{i} \left[\left(\sigma_i^{exp} - \sigma_i^{cal} \right) / \sigma_i^{cal} \right]^2}{n - v}}_{\text{where } n \text{ and } v \text{ are the number}}$$
of experimental points and adjustable parameters, respectively.

_

5. Refractive index

S13 Refractive indices n_D at 25°C of [Ch][AA] ILs as a function of the molecular polarizability of the amino acid per molar volume. We determined the [Ch][AA]ILs polarizability according to the method proposed by Kassimi et al. (N. E. Kassimi, A. J. Thakkar, *Chem. Phys. Lett.*, 2009, **472**, 232–236.)