Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

SUPPORTING INFORMATION

Novel Pyrromethene dyes with N-ethyl carbazole at *meso* position: a comprehensive photophysical, lasing, photostability and TD-DFT study⁺

Kishor G. Thorat,^a Priyadarshani Kamble,^b Alok K. Ray^{*b} and Nagaiyan Sekar^{*a}

Table of content

Page no.

1	Table S1 Mulliken Charges (e.s.u.) on selected atoms of the dyes 1-3 at their respective	S3
	optimized ground state and excited state geometries, calculated by using B3LYP/6-31G	
	(d) PCM level of theory in n-heptane	
2	Table S2. Ab initio calculated parameters of PM dyes 2-3 in solvents of different polarities	S3
	using TD-DFT (B3LYP/6-31G(d)) PCM method	
3	Fig. S1 Normalized absorption spectra of the dye 2 in various solvents	S 4
4	Fig. S2 Normalized emission spectra of the dye 2 in various solvents	S 4
5	Fig. S3 Normalized absorption spectra of the dye 3 in various solvents	S5
6	Fig. S4 Normalized emission spectra of the dye 3 in various solvents	S5
7	Fig. S5 Optimized structure in GS and Mulliken charges of dye ${f 1}$ in GS and ES in solvent n-	S6
	heptane	
8	Fig. S6 Optimized structure in GS and Mulliken charges of dye 2 in GS and ES in solvent n-	S6
	heptane	
9	Fig. S7 Optimized structure in GS and Mulliken charges of dye 3 in GS and ES in solvent n-	S7
	heptane	
10	Fig. S8 A schematic of narrow band dye laser set up used for experiments	S7
11	Fig. S9 Plausible reaction mechanism of the dyes 2 and 3 with 1O_2	S8
12	Fig. S10 ¹ H NMR spectrum of Ethyl 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (6)	S8
13	Fig. S11 ¹³ C NMR spectrum of Ethyl 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (6)	S 9
14	Fig. S12 Mass spectrum of Ethyl 4-benzyl-3, 5- dimethyl-1H-pyrrole-2-carboxylate (6)	S 9
15	Fig. S13 ¹ H NMR spectrum of sodium 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (7)	S10
16	Fig. S14 ¹³ C NMR spectrum of sodium 4-benzyl-3, 5- dimethyl-1H-pyrrole-2-carboxylate	S10
	(7)	
17	Fig. S15 Mass spectrum of sodium 4-benzyl-3, 5- dimethyl-1H-pyrrole-2-carboxylate (7)	\$11
18	Fig. S16 ¹ H NMR spectrum of 3-Benzyl-2, 4-dimethyl-1H-pyrrole (8)	S12
19	Fig. S17 ¹³ C NMR spectrum of 3-Benzyl-2, 4-dimethyl-1H-pyrrole (8)	S12
20	Fig. S18 Mass spectrum of 3-Benzyl-2, 4-dimethyl-1H-pyrrole (8)	S13
21	Fig. S19 ¹ H NMR spectrum of the dye 2	S14
22	Fig. S20 ¹³ C NMR spectrum of the dye 2	S15
23	Fig. S21 ¹⁹ F NMR spectrum of the dye 2	S15
24	Fig. S22 HRMS spectrum of the dye 2	S16
25	Fig. S23 ¹ H NMR spectrum of the dye 3	S16
26	Fig. S24 ¹³ C NMR spectrum of the dye 3	S17
27	Fig. S25 ¹⁹ F NMR spectrum of the dye 3	S17
28	Fig. S26 HRMS spectrum of the dye 3	S18

A tom 1 00	Dy	re 1	D	ye 2	Dye 3		
Atom no.	GS ^[a]	ES ^[b]	GS	ES	GS	ES	
C-1	+0.087	+0.091	+0.088	+0.080	+0.097	+0.089	
C-2	+0.019	+0.012	+0.015	+0.021	+0.007	+0.014	
C-3	+0.316	+0.323	+0.317	+0.316	+0.334	+0.315	
N-3′	-0.576	-0.571	-0.579	-0.582	-0.581	-0.583	
B-4	+0.693	+0.687	+0.694	+0.694	+0.694	+0.695	
C-7′	+0.183	+0.180	+0.215	+0.234	+0.214	+0.234	
C-8	+0.115	+0.111	-0.030	-0.037	-0.027	-0.035	
C9	-0.015	-0.006	+0.020	+0.016	+0.019	+0.017	
C-10	-0.056	-0.059	-0.055	-0.056	-0.123	-0.123	
C-11	+0.007	+0.007	+0.005	+0.007	+0.180	+0.181	

Table S1: Mulliken Charges (e.s.u.) on selected atoms of the dyes 1-3 at their respective optimized ground state and excited state geometries, calculated by using B3LYP/6-31G (d) PCM level of theory in n-heptane

^[a]Mulliken charges of molecules in ground state; ^[b]Mulliken charges of molecules in excited state

Table S2: Ab initio calculated parameters of PM dyes 2-3 in solvents of different polarities using TD-DFT (B3LYP/6-31G(d)) PCM method

			Dye 2			_			Dye 3		
Solvent	Е _Н [а]	EL[b]	E _H -EL	$\mu_0^{[c]}$	$\mu_1^{[d]}$		E _H	EL	E _H -E _L	μ_0	μ_1
	(eV)	(eV)	(eV)	(Debye)	(Debye)		(eV)	(eV)	(eV)	(Debye)	(Debye)
DMSO	-5.365	-2.421	2.944	8.445	9.236		-5.4348	-2.4865	2.9483	8.620	9.254
DMF	-5.361	-2.417	2.944	8.426	9.206		-5.4315	-2.4835	2.9480	8.600	9.230
ACN	-5.361	-2.417	2.944	8.422	9.207		-5.4310	-2.4830	2.9480	8.596	9.225
MeOH	-5.359	-2.415	2.944	8.413	9.195		-5.4296	-2.4816	2.9480	8.586	9.214
EtOH	-5.355	-2.412	2.943	8.381	9.153		-5.4225	-2.4735	2.9491	8.551	9.173
Acetone	-5.349	-2.405	2.943	8.352	9.111		-5.4198	-2.4721	2.9477	8.521	9.138
EtOAc	-5.289	-2.349	2.941	7.987	8.661		-5.3638	-2.4177	2.9461	8.128	8.558
CHCl₃	-5.270	-2.330	2.940	7.861	8.506		-5.3453	-2.4000	2.9453	7.998	8.414
Dioxane	-5.186	-2.250	2.935	7.293	7.806		-5.2658	-2.3235	2.9423	7.405	7.768
Heptane	-5.167	-2.235	2.932	7.151	7.636		-5.2473	-2.3067	2.9407	7.264	7.608

^[a]Energy of highest occupied molecular orbital (HOMO); ^[b] Energy of lowest unoccupied molecular orbital (LUMO); ^[c]Dipole moment in ground state (S_0); ^[d]Dipole moment in excited state (S_1).

Fig. S1 Normalized absorption spectra of the dye 2 in various solvents

Fig. S2 Normalized emission spectra of the dye 2 in various solvents

Fig. S3 Normalized absorption spectra of the dye 3 in various solvents

Fig. S4 Normalized emission spectra of the dye 3 in various solvents

Fig. S5 Optimized structure in ground (S_0) state and Mulliken charges (e.s.u) of the dye **1** in ground state (S_0) (black digits) and first excited state (S_1) (red digits) in solvent n-heptane, calculated by B3LYP/6-31G(d)level of theory (hydrogen atoms are omitted for more clarity).

Fig. S6 Optimized structure in ground (S_0) state and Mulliken charges (e.s.u) of the dye **2** in ground state (S_0) (black digits) and first excited state (S_1) (red digits) in solvent n-heptane, calculated by B3LYP/6-31G(d)level of theory (hydrogen atoms are omitted for more clarity).

Fig. S7 Optimized structure in ground (S_0) state and Mulliken charges (e.s.u) of the dye **3** in ground state (S_0) (black digits) and first excited state (S_1) (red digits) in solvent n-heptane, calculated by B3LYP/6-31G(d)level of theory (hydrogen atoms are omitted for more clarity).

Fig. 8 A schematic of narrow band dye laser set up used for experiments

Dye**2**; R=CH₃ Dye**3**; R=C₅H₅

Fig. S9 Plausible reaction mechanism of the dyes 2 and 3 with ${}^1\text{O}_2$

Fig. 10 ¹H NMR spectrum of Ethyl 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (6)

Fig. S11 ¹³C NMR spectrum of Ethyl 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (6)

Fig. S12 Mass spectrum of Ethyl 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (6)

Fig. S13 ¹H NMR spectrum of sodium 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (7)

Fig. S14 ¹³C NMR spectrum of sodium 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (7)

Fig. S15 Mass spectrum of sodium 4-benzyl-3, 5-dimethyl-1H-pyrrole-2-carboxylate (7)

Fig. S16 ¹H NMR spectrum of 3-Benzyl-2, 4-dimethyl-1H-pyrrole (8)

Fig. S17 ¹³C NMR spectrum of 3-Benzyl-2, 4-dimethyl-1H-pyrrole (8)

Spectrum Plot - 1/19/2015 2:42 PM

Fig. S18 Mass spectrum of 3-Benzyl-2, 4-dimethyl-1H-pyrrole (8)

Fig. S19 ¹H NMR spectrum of the dye 2.

Fig. S21 ¹⁹F NMR spectrum of the dye 2.

MS Zoomed Spectrum

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
498.2893 1		118870.19	C31H34BF2N3	(M+H)+
499.2921	1	40134.95	C31H34BF2N3	(M+H)+
500.2952	1	6948.03	C31H34BF2N3	(M+H)+
501.2988	1	771.98	C31H34BF2N3	(M+H)+
520.2709	1	2051.9	C31H34BF2N3	(M+Na)+
521.2742	1	967.78	C31H34BF2N3	(M+Na)+
522.2763	1	537.07	C31H34BF2N3	(M+Na)+

Fig. S22 HRMS spectrum of the dye 2.

∑ -145.40 ∑ -145.47 ∑ -145.54 -145.61

Fig. S24 ¹³C NMR spectrum of the dye 3.

Dye3 Fluorine

-139.5 -140.5 -141.5 -142.5 -143.5 -144.5 -145.5 -146.5 -147.5 -148.5 -149.5 -150.5 -151.5 fl (ppm)

Fig. S25 ¹⁹F NMR spectrum of the dye 3.

MS Zoomed Spectrum

MS Spectrum Peak List

m/z	z	Abund	Formula	Ion
622.3191	1	58282.21	C41H38BF2N3	(M+H)+
623.3221	1	25492.14	C41H38BF2N3	(M+H)+
624.3247	1	5864.28	C41H38BF2N3	(M+H)+
625.3301	1	605.49	C41H38BF2N3	(M+H)+
644.3017	1	810.02	C41H38BF2N3	(M+Na)+
645.3052	1	546.92	C41H38BF2N3	(M+Na)+
646.316	1	430.4	C41H38BF2N3	(M+Na)+

Fig. S26 HRMS spectrum of the dye 3.