Supplementary Information

Magnetic Liposomes based on Nickel Ferrite Nanoparticles for Biomedical Applications

Ana Rita O. Rodrigues,^{*a*} I. T. Gomes,^{*a,b*} Bernardo G. Almeida,^{*a*} J. P. Araújo,^{*b*} Elisabete M. S. Castanheira,^{*a*} Paulo J. G. Coutinho^{*a*}

^a Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal ^b IFIMUP/IN - Instituto de Nanociência e Nanotecnologia, R. Campo Alegre, 4169-007 Porto, Portugal

Fig. S1 TEM images of the synthesized NiFe₂O₄ NPs, containing NiO-rich particles (the larger ones).

Fig. S2 EDAX elemental analysis of area corresponding to figure S1A.

Element	EDAX Atomic (%)	Calculated atomic (%)
Ni	54.2	50.0
Fe	2.5	0
0	43.3	50.0

Table S1. EDAX atomic percentages considering only Ni, Fe and O contributions and comparison with the values predicted for NiO NPs.

Details of Rietveld XRD analysis using FullProf Software

Bragg-Brentano (X-rays) geometry

March-Dollase model for preferred orientation with

 $G_1=0$ and $G_2=1$ which corresponds to **no preferred orientation** ($P_h=1$)

Background defined by a 6 coefficient polynomial centered at $2\Theta = 40^{\circ}$

Profile function used was T-C-H Pseudo-Voigt function convoluted with asymmetry due to axial divergence, as formulated by van Laar and Yelon.^{S1}

Instrumental Resolution Function obtained with a XRD pattern of a reference sample

U-inst V-inst W-inst X-inst Y-inst Z-inst -0.02522 0.00705 0.02608 0.00000 0.00000 0.00000

where U, V, W, X, Y and Z define the variation of Gaussian and Lorentzian widths of the peaks profile with diffraction angle.^{S2,S3}

Zero point fixed to -0.0608 (obtained from the XRD pattern of a reference sample)

Displacement peak-shift parameter:	$SyCos = 0.0122 \pm 0.0006$	(Fit 1)
	0.0113 ± 0.0007	(Fit 2)
	0.0118 ± 0.0006	(Fit 3)
	$\Delta(2\theta) = -SyCos \times Cos$	s(θ)
Transparency peak-shift parameter:	$SySin = 0.020 \pm 0.003$	(Fit 1)

 0.012 ± 0.003 (Fit 2)

 0.023 ± 0.003 (Fit 3)

 $\Delta(2\theta) = SySin \times Sin(2\theta)$

Phase 1: NiFe₂O₄

Number of Space group: 227 Hermann-Mauguin Symbol: F d -3 m Hall Symbol: -F 4vw 2vw 3 Atom coordinates, occupation and isothermal factors (Bs)

Atom	x/a	y/b	z/b	Occ	В
	0.125	0.125	0.125	1	-1.272±0.007
Fe_T	0.125	0.125	0.125	1	0
	0.125	0.125	0.125	0.76±0.03	-1.282 ± 0.007
	0.5	0.5	0.5	1	-1.150 ± 0.007
Fe_Oh	0.5	0.5	0.5	1	0
	0.5	0.5	0.5	$1.24{\pm}0.03$	-1.132±0.007
	0.5	0.5	0.5	1	-1.150 ± 0.007
Ni_Oh	0.5	0.5	0.5	1	0
	0.5	0.5	0.5	0.76 ± 0.03	-1.132±0.007
	0.2515±0.00003	0.2515 ± 0.00003	0.2515 ± 0.00003	4	-1.861±0.015
0	0.2512±0.00003	0.2512 ± 0.00003	0.2512±0.00003	4	0
	0.2517±0.00003	0.2517 ± 0.00003	0.2517 ± 0.00003	4	-1.88±0.015
	0.125	0.125	0.125	0	-1.272 ± 0.007
Ni_T	0.125	0.125	0.125	0	0
	0.125	0.125	0.125	0.24±0.03	-1.282 ± 0.007

Profile parameters

Overall scale factor:	$\begin{array}{l} 0.0000001722 \ \pm 0.0000000001 \\ 0.00000019887 \pm 0.0000000009 \\ 0.00000001723 \pm 0.000000001 \end{array}$	(Fit 1) (Fit 2) (Fit 3)
Cell parameters:		
$\begin{array}{c} a{=}8.3350\pm0.0001\\ 8.3339\pm0.0001\\ 8.3352\pm0.0001\\ b{=}8.3350\pm0.0001 \end{array}$	(Fit 1) (Fit 2) (Fit 3) (Fit 1)	
$\begin{array}{c} 8.3339 \pm 0.0001 \\ 8.3352 \pm 0.0001 \end{array}$	(Fit 2) (Fit 3)	
$\begin{array}{c} c{=}8.3350 \pm 0.0001 \\ 8.3339 \pm 0.0001 \\ 8.3352 \pm 0.0001 \end{array}$	(Fit 1) (Fit 2) (Fit 3)	
Preferred orientation:	$\begin{array}{l} G_1=1\\ G_2=0 \end{array}$	

X (strain enlargement) and Y (size enlargement) parameters:

$\mathbf{X} = 0$	
$Y = 0.4263 \pm 0.0003$	(Fit 1)
0.4195 ± 0.0003	(Fit 2)
0.4258 ± 0.0003	(Fit 3)

Phase 2: FeNaO₂

Number of Space group:33Hermann-Mauguin Symbol:P n a 21Hall Symbol:P 2c -2nCOD ID = 1008191

Atom	x/a	y/b	z/b	Occ	В
	0.062	0.13	0	1	0.33 ± 0.03
Fe	0.062	0.13	0	1	0
	0.062	0.13	0	1	0.37 ± 0.03
	0.416	0.151	0.489	1	-2.40 ± 0.03
Na	0.416	0.151	0.489	1	0
	0.416	0.151	0.489	1	-2.41 ± 0.03
	0.043	0.084	0.339	1	2.15 ± 0.08
O1	0.043	0.084	0.339	1	0
	0.043	0.084	0.339	1	2.26 ± 0.08
O2	0.38	0.153	0.927	1	-2.60 ± 0.05
	0.38	0.153	0.927	1	0
	0.38	0.153	0.927	1	-2.52 ± 0.05

Atom coordinates, occupation and isothermal factors (Bs)

Profile parameters

Overall scale factor:	0.0003173 ± 0.0000005	(Fit 1)
	0.0003247 ± 0.0000004	(Fit 2)
	0.0003172 ± 0.0000005	(Fit 3)

Cell parameters:

 $\begin{array}{l} a=5.61077\pm 0.00008 \quad (Fit\ 1)\\ 5.60964\pm 0.00009 \quad (Fit\ 2)\\ 5.61087\pm 0.00008 \quad (Fit\ 3) \end{array}$ $\begin{array}{l} b=7.1917\pm 0.0001 \quad (Fit\ 1)\\ 7.1909\pm 0.0001 \quad (Fit\ 2)\\ 7.1919\pm 0.0001 \quad (Fit\ 3) \end{array}$ $\begin{array}{l} c=5.37289\pm 0.00008 \quad (Fit\ 1)\\ 5.37188\pm 0.00009 \quad (Fit\ 2)\\ 5.37294\pm 0.00008 \quad (Fit\ 3) \end{array}$ Preferred orientation: $\begin{array}{l} G_1=1\\ G_2=0 \end{array}$

X (strain enlargement) and Y (size enlargement) parameters:

 $\begin{array}{lll} X = 0 \\ Y = & 0.1500 \pm 0.0003 \end{array} (Fit 1) \end{array}$

0.1483 ± 0.0004	(Fit 2)
0.1497 ± 0.0003	(Fit 3)

Phase 3: NiO

Number of Space group: 225 Hermann-Mauguin Symbol: F m -3 m Hall Symbol: -F 4 2 3 COD ID : 1010381

Atom coordinates, occupation and isothermal factors (Bs)

Atom	x/a	y/b	z/b	Occ	В
Ni	0	0	0	1	0.55 ± 0.02
	0	0	0	1	0
	0	0	0	1	0.61 ± 0.02
	0.5	0.5	0.5	1	-1.66 ± 0.05
0	0.5	0.5	0.5	1	0
	0.5	0.5	0.5	1	-1.68 ± 0.05

Profile parameters

Overall scale factor:	$0.00000044 \pm 0.00000001$	(Fit 1)
	$0.000000450 \pm 0.000000007$	(Fit 2)
	$0.00000044 \pm 0.00000001$	(Fit 3)

Cell parameters:

$\begin{array}{c} a = 4.1783 \pm 0.0006 \\ 4.1777 \pm 0.0007 \\ 4.1784 \pm 0.0006 \end{array}$	(Fit 1) (Fit 2) (Fit 3)
$b{=}\; 4.1783 \pm 0.0006 \\ 4.1777 \pm 0.0007 \\ 4.1784 \pm 0.0006$	(Fit 1) (Fit 2) (Fit 3)
$\begin{array}{c} c{=}~4.1783\pm0.0006\\ 4.1777\pm0.0007\\ 4.1784\pm0.0006 \end{array}$	(Fit 1) (Fit 2) (Fit 3)

 $\begin{array}{ll} \mbox{Preferred orientation:} & G_1 = 1 \\ & G_2 = 0 \end{array}$

X (strain enlargement) and Y (size enlargement) parameters:

 $\begin{array}{ll} X = 0 \\ Y = 0.296 \pm 0.008 & (Fit \ 1) \\ 0.321 \pm 0.009 & (Fit \ 2) \\ 0.296 \pm 0.008 & (Fit \ 3) \end{array}$

Figures of merit

Fit 1

```
==> RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR
PATTERN: 1
 => Cycle: 27 => MaxCycle:250
=> N-P+C: 3471
=> R-factors (not corrected for background) for Pattern: 1
                            Rexp: 6.19 Chi2: 1.69
 => Rp: 6.17
             Rwp: 8.05
L.S. refinement
=> Conventional Rietveld R-factors for Pattern: 1
=> Rp: 11.7 Rwp: 13.0 Rexp: 10.00 Chi2: 1.69
=> Deviance: 0.589E+04 Dev* : 1.694
=> DW-Stat.: 1.2601 DW-exp: 1.9117
=> N-sigma of the GoF: 28.699
==> RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR
PATTERN: 1
=> N-P+C: 3248
=> R-factors (not corrected for background) for Pattern: 1
=> Rp: 6.16 Rwp: 8.05 Rexp: 6.10 Chi2: 1.75
L.S. refinement
=> Conventional Rietveld R-factors for Pattern: 1
=> Rp: 11.3 Rwp: 12.8 Rexp: 9.68 Chi2: 1.75
=> Deviance: 0.569E+04 Dev* : 1.750
=> DW-Stat.: 1.3033 DW-exp: 1.9093
=> N-sigma of the GoF: 30.026
=> Global user-weigthed Chi2 (Bragg contrib.): 1.80
    _____
    BRAGG R-Factors and weight fractions for Pattern # 1
    _____
=> Phase: 1 Nickel iron oxide 14174 Trevorite
=> Bragg R-factor: 1.99 Vol: 579.048( 0.014)
Fract(%): 67.23(0.27)
=> Rf-factor= 1.85
                                  ATZ: 1080076.500
Brindley: 1.0000
              IronIII sodium oxide – -beta
=> Phase: 2
=> Bragg R-factor: 9.20
                                   Vol: 216.802( 0.006)
Fract(%): 19.03(0.08)
\Rightarrow Rf-factor= 4.77
                                  ATZ:
                                                   443.342
Brindley: 1.0000
=> Phase: 3 Nickel oxide
=> Bragg R-factor: 4.44
                             Vol: 72.945( 0.019)
Fract(%): 13.74(0.40)
=> Rf-factor= 2.50
                             ATZ: 688429.688
Brindley: 1.0000
```

Fit 2

==> RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1 => Cycle: 15 => MaxCycle:250 => N-P+C: 3480 => R-factors (not corrected for background) for Pattern: 1 => Rp: 7.51 Rwp: 9.47 Rexp: 6.20 Chi2: 2.33 L.S. refinement => Conventional Rietveld R-factors for Pattern: 1 => Rp: 14.4 Rwp: 15.4 Rexp: 10.05 Chi2: 2.33 >> Deviance: 0.814E+04 Dev* : 2.337
=> DW-Stat.: 0.9106 DW-exp: 1.9065
=> N-sigma of the GoF: 55.568 ==> RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1 => N-P+C: 3255 => R-factors (not corrected for background) for Pattern: 1 => Rp: 7.55 Rwp: 9.52 Rexp: 6.10 Chi2: 2.43 L.S. refinement => Conventional Rietveld R-factors for Pattern: 1 > Rp: 14.0 Rwp: 15.2 Rexp: 9.73 Chi2: 2.43
=> Deviance: 0.794E+04 Dev* : 2.436
=> DW-Stat.: 0.9332 DW-exp: 1.9037
=> N-sigma of the GoF: 57.806 => N-sigma of the GoF: 57.806 => Global user-weigthed Chi2 (Bragg contrib.): 2.49 _____ BRAGG R-Factors and weight fractions for Pattern # 1 _____ => Phase: 1 Nickel iron oxide 14174 Trevorite => Bragg R-factor: 6.35 Vol: 578.819(0.017) Fract(%): 69.77(0.15) => Rf-factor= 3.75 ATZ: 1080076.500 Brindley: 1.0000 => Phase: 2 IronIII sodium oxide - -beta Vol: 216.693(0.006) => Bragg R-factor: 11.7 Fract(%): 17.51(0.04) = Rf-factor= 7.03 ATZ: 443.342 Brindley: 1.0000 => Phase: 3 Nickel oxide => Bragg R-factor: 8.43 Vol: 72.912(0.021) Fract(%): 12.72(0.21) => Rf-factor= 3.62 ATZ: 688429.688 Brindley: 1.0000

7

Fit 3

==> RELIABILITY FACTORS WITH ALL NON-EXCLUDED POINTS FOR PATTERN: 1 => Cycle: 70 => MaxCycle:250 => N-P+C: 3470 => R-factors (not corrected for background) for Pattern: 1 => Rp: 6.16 Rwp: 8.04 Rexp: 6.19 Chi2: 1.69 L.S. refinement => Conventional Rietveld R-factors for Pattern: 1 => Rp: 11.7 Rwp: 13.0 Rexp: 10.01 Chi2: 1.69 => Deviance: 0.588E+04 Dev* : 1.693 => DW-Stat.: 1.2627 DW-exp: 1.9123 => N-sigma of the GoF: 28.545 ==> RELIABILITY FACTORS FOR POINTS WITH BRAGG CONTRIBUTIONS FOR PATTERN: 1 => N-P+C: 3247 => R-factors (not corrected for background) for Pattern: 1 => Rp: 6.15 Rwp: 8.04 Rexp: 6.09 Chi2: 1.74 L.S. refinement => Conventional Rietveld R-factors for Pattern: 1 => Rp: 11.3 Rwp: 12.8 Rexp: 9.68 Chi2: 1.74 => Deviance: 0.568E+04 Dev* : 1.749 => DW-Stat.: 1.3060 DW-exp: 1.9099 => N-sigma of the GoF: 29.868 => Global user-weigthed Chi2 (Bragg contrib.): 1.80 _____ BRAGG R-Factors and weight fractions for Pattern # 1 _____ => Phase: 1 Nickel iron oxide 14174 Trevorite => Bragg R-factor: 2.03 Vol: 579.089(0.015) Fract(%): 67.18(0.29) => Rf-factor= 1.85 ATZ: 1080076.500 Brindley: 1.0000 => Phase: 2 IronIII sodium oxide - -beta Vol: 216.814(0.006) => Bragg R-factor: 9.22 Fract(%): 19.00(0.09)=> Rf-factor= 4.80 ATZ: 443.342 Brindley: 1.0000 => Phase: 3 Nickel oxide => Bragg R-factor: Vol: 72.954(0.020) 4.50 Fract(%): 13.82(0.43)ATZ: => Rf-factor= 2.52 688429.688 Brindley: 1.0000

Microstructural analysis was performed by Fullprof software using the broadening of the XRD peaks with an implementation previously described.^{S2,S3}

References

S1. B. van Laar, W. B. Yelon, The peak in neutron powder diffraction, *J. Appl. Cryst.*, 1984, **17**, 47-54.

S2. J. Rodríguez-Carvajal, T. Roisnel, Line Broadening analysis Using FullProf: Determination of Microstructural Properties, *Materials Science Forum*, 2004, **443-444**, 123-126.

S3. J. Rodríguez-Carvajal, *Study of Micro-Structural Effects by Powder Diffraction Using the Program FULLPROF*, IV Congreso de la Sociedad Mexicana de Cristalografía, Morelia, Michoacan, México, Libro de Resúmenes, 2003, 66-75.

http://sdpd.univ-lemans.fr/DU-SDPD/pdf/Microstructural_effects.pdf