Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

## **Supporting Information**

## **Additional Data**



**Figure S1.** Water sorption isotherms at 298 K of the samples H-MOF (CAU-10- $H_{0.76}/(SO_3H)_{0.24}$ ), NO<sub>2</sub>-MOF (CAU-10-(NO<sub>2</sub>)<sub>0.79</sub>/(SO<sub>3</sub>H)<sub>0.21</sub>), OH-MOF (CAU-10-(OH)<sub>0.89</sub>/(SO<sub>3</sub>H)<sub>0.11</sub>) and single linker CAU-MOF. Prior to each measurement the samples were activated at 200 °C over night under vacuum (10<sup>-2</sup> kPa). [Weiss et al. 2015, Reinsch et al. 2013]



**Figure S2.** Water sorption isotherms at 298 K of the powder sample H-MOF (CAU-10- $H_{0.76}/(SO_3H)_{0.24}$ ) and after pellet pressing. Prior to each measurement the samples were activated at 200 °C over night under vacuum (10<sup>-2</sup> kPa).



**Figure S3.** Screening using measurement setup (a) in the range from 10 Hz to  $10^6$  Hz. Exemplary plots of Re(C) over frequency for the H-MOF sample (CAU-10-H<sub>0.76</sub>/(SO<sub>3</sub>H)<sub>0.24</sub>) at different relative

humidity levels. Calculated according the the following equation:  $Re(C) = \frac{-Im(Z)}{\omega(Re(Z)^2 + Im(Z)^2)}$ [Weiss et al. 2015].



**Figure S4.** Response  $\text{Re}(C)/\text{Re}(C)_0$  of the samples H-MOF (CAU-10-H<sub>0.76</sub>/(SO<sub>3</sub>H)<sub>0.24</sub>), NO<sub>2</sub>-MOF (CAU-10-(NO<sub>2</sub>)<sub>0.79</sub>/(SO<sub>3</sub>H)<sub>0.21</sub>) and OH-MOF (CAU-10-(OH)<sub>0.89</sub>/(SO<sub>3</sub>H)<sub>0.11</sub>) when exposed to different humidity levels. Data points are calculated using the values at 1039 Hz from the frequency sweep. [Weiss et al. 2015]

 Weiss et al. 2015
Weiss, A.; Reimer, N.; Stock, N.; Tiemann, M.; Wagner, T. Screening of Mixedlinker CAU-10 MOF Materials for humidity Sensing by Impedance Spectroscopy. Microporous and Mesoporous Materials, submitted 2015.
Reinsch et al. 2013
Reinsch, H.; van der Veen, M.; Gil, B.; Marszalek, B.; Verbiest, T.;de Vos, D.; Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chem. Mater., 2013, 25 (1), pp 17–26; DOI: 10.1021/cm3025445