Supplementary material

I. Normalized cross section data

In the main body of the manuscript we present absolute cross sections for PT, DT and CT. For illustrating the relative importance of the rotation it is helpful to plot relative cross sections, here normalized to the values on the R(1) pump line, see Figures S1, S2 and S3.

Figure S1 Normalized cross sections for proton transfer in the title reaction as a function of the average rotational energy, <*E*_{rot}>. The different traces correspond to different center of mass energies as indicated.

Figure S2 Normalized cross sections for deuteron transfer in the title reaction as a function of the average rotational energy, <*E*_{rot}>. The different traces correspond to different center of mass energies as indicated.

Figure S3 Normalized cross sections for charge transfer in the title reaction as a function of the average rotational energy, <*E*_{rot}>. The different traces correspond to different center of mass energies as indicated.

In particular for the PT shown in Figure S1 the rotational effect is clearly most pronounced at the lowest center of mass energy. The effect becomes smaller with increasing $E_{c.m.}$. For both PT and DT the relative variation of the cross section with E_{rot} is smallest for the highest $E_{c.m.}$. In the charge transfer the rotational dependence of the cross section is less pronounced. The local maximum of the cross section around E_{rot} =32.5 meV mentioned in the main text becomes evident in Figure S3 for all $E_{c.m.}$.

II. Additional model calculations

In the main body of the manuscript we presented model calculation based on the concept of matching rotational velocities. We wish to point out that a slightly different approach in the model leads to smaller rms deviation, however at the cost of a larger number of parameters.

This alternative model is based on discussing the actual rotational energy of the ion (the rotational energy of the neutral is not explicitly taken into account). In this model the cross section is given by Equation (S1).

$$\sigma = a \cdot \left[E_{c.m.} + \frac{\left(\frac{E_{rol} + b}{B_0}\right)^2 + c}{d \cdot E_{c.m.}^e} \right]^f$$
(S1)

This model function can be rationalized as follows: The general form of Equation S1 resembles the classical form of the Langevin relation. However the energy operative has been corrected by a term containing the contribution of rotational energy, the 2nd summand in the bracket. As evident from looking at Figure of the main text the rotational dependence of the cross section exhibits a minimum around a rotational energy of 30 meV. Here, we assume that the rotational dependence of the cross

section can be modelled by an inverted parabola with 2 parameters for shifting in x-(b) and y- direction (c) respectively and a third parameter for the scaling of the parabola (d) . Further inspection of Figure (main text) reveals that the effect of the rotational correction depends on the center of mass collision energy, the correction being largest for the largest $E_{c.m.}$. Taking into account this effect requires another parameter (e).

By including the rotational constant we tried to generalize our proposed model function shown in Equation (S1). As a result we arrive at the fits included in Figure S4 and Figure S5. The optimized parameters are given in table S1

Figure S4 Cross sections for proton transfer in the title reaction as a function of the average rotational energy, <*E*_{rot}>. The different traces correspond to different center of mass energies as indicated.

Figure S5 Cross sections for deuteron transfer in the title reaction as a function of the average rotational energy, $\langle E_{rot} \rangle$. The different traces correspond to different center of mass energies as indicated.

Table S1Parameters obtained in the modeling of cross sections for PT and DT according to Equation(S1). The rotational constants are taken from ref. [1].

PT	DT		
26.1	29		
-0.03	-0.048		
-5	-4		
-4.782*10	-4.063*10		
-3.522*10 ⁻⁵	-2.567*10 ⁻⁴		
-0.1	05		
-2.164			
9.794 (HCI)	5.062 (DCI)		
	PT 26.1 -0.03 -4.782*10 -3.522*10 ⁻⁵ -0.1 -2.1 9.794 (HCI)		

It is interesting to compare the optimized parameter sets. The fits described above used three parameters in common for simulating the PT and the DT data, i.e. the parameters a, e, and f.

The difference between the two parameter sets is observed in the values of b, c and d. We note, that b represents the rotational energy for which the cross section is minimum for a given collision energy. The parameter c reflects the shifting of the parabola on the sigma axis, i.e. the minimum value of sigma for a given collision energy. The parameter d reflects the scaling factor for the parabola accounting for the rotational correction. Evidently the model proposed is capable of describing the experimental data convincingly. Three parameters mainly affecting the collision energy dependence of σ are common to both data sets. Three parameters affecting the specific role of the rotational energy (or angular momentum) are specific for PT and DT. Note that we chose to include the rotational constant in the rotational term of equation (S1). Apparently this does not lead to a simplification of the model, but not to a complication either.

The form of the model function includes the possibility to account for a parabolic characteristic. This however, does not imply that the modelling is biased to this feature. As a matter of fact the data for DT are also well described by the model function although the data do not exhibit a minimum in the data range covered.

III. Geometry, energies and frequency parameters from ab initio calculations

spezies	bond length / Å		ł	oond angle / °		dihedral / °
1 - 2 - 3 - 4	1 - 2	2 - 3	3 - 4	1 - 2 - 3	2 - 3 - 4	1 - 2 - 3 - 4
HCI	1.26957	-	-	-	-	-
HCI⁺	1.30869	-	-	-	-	-
HHCI⁺	1.30026	1.30049	-	42.922	-	-
HCIHCI (int1)	1.29005	2.89729	1.29005	97.333	61.222	-80.465
HCIHCI (ts)	1.28390	1.97742	1.33968	99.414	124.010	-95.273
HCIHCI (int2)	1.29185	1.42968	1.75246	94.942	178.273	180.000

S2 Geometry parameters on UMP2/def2-tzvpp, lengths in Å, angles in °

S3 Geometry parameters on CCSD/def2-tzvpp, lengths in Å, angles in °

spezies	bond length / Å		b	ond angle / °		dihedral / °
1 - 2 - 3 - 4	1 - 2	2 - 3	3 - 4	1 - 2 - 3	2 - 3 - 4	1 - 2 - 3 - 4
HCI	1.27205	-	-	-	-	-
HCI⁺	1.31085	-	-	-	-	-
HHCI⁺	1.30119	1.30120	-	42.718	-	-
HCIHCI (int1)	1.29079	2.91858	1.29079	97.419	61.148	-80.189
HCIHCI (ts)		not	optimizable wi	th Gaussian 03		
HCIHCI (int2)	1.29420	1.39154	1.85123	95.325	178.241	180.000

UMP2 / def2-tzvpp

S4 Energies on UMP2/def2-tzvpp in a.u.

	energies in a.	u.		
	E	ZPVE	thermal	E + ZPVE
HCI	-460.30270	6.998E-03	-460.31356	-460.29570
HCI⁺	-459.83973	6.264E-03	-459.84976	-459.83119
DCI	-460.30270	5.019E-03	-460.31621	-460.29768
DCI⁺	-459.83973	4.493E-03	-459.85220	-459.83296
H_2CI^+	-460.52338	1.558E-02	-460.52803	-460.50779
HDCI⁺	-460.52338	1.341E-02	-460.53074	-460.50997
CI	-459.63724	0.00	-459.65098	-459.63530
CI ⁺	-459.16965	0.00	-459.18408	-459.16802
int1_HCIHCI	-920.19761	1.659E-02	-920.20431	-920.17755
ts_HcIHCI	-920.16670	1.433E-02	-920.17673	-920.15010
int2_HclHCl	-920.18156	1.529E-02	-920.19066	-920.16418
int1_DCIHCI	-920.19761	1.434E-02	-920.20696	-920.17980
int1_HCIDCI	-920.19761	1.434E-02	-920.20696	-920.17980
ts_DCIHCI	-920.16670	1.211E-02	-920.17938	-920.15232
ts_HCIDCI	-920.16670	1.264E-02	-920.17864	-920.15178
int2_DCIHCI	-920.18156	1.302E-02	-920.19337	-920.16644
int2_HCIDCI	-920.18156	1.339E-02	-920.19271	-920.16608

S5 Sum of electronic and thermal free energies in eV

	HCI	DCI1		DCI2	
educts		0	0		0
int1		-1.115	-1.121		-1.121
ts		-0.365	-0.371		-0.350
int2		-0.744	-0.751		-0.733
products		-0.427	-0.434		-0.434
СТ		-0.006			

S6 Sum of electronic and zero-point energies in eV

	HCI	DCI1		DCI2	
educts		0	0		0
int1	-1	.379	-1.392		-1.392
ts	-().632	-0.644		-0.629
int2	-1	.015	-1.028		-1.018
products	-().441	-0.452		-0.452
СТ	-(0.006			

CCSD/def2-tzvpp

S7 Energies on CCSD/def2-tzvpp in a.u.

	energies in a.	u.		
	E	ZPVE	thermal	E + ZPVE
HCI	-460.31590	6.912E-03	-460.33430	-460.31644
HCI⁺	-459.85667	6.209E-03	-459.87563	-459.85706
DCI				
DCI⁺				
H_2CI^+	-460.53903	1.555E-02	-460.55159	-460.53135
HDCI⁺				
CI	-459.65283	0.00	-459.67456	-459.65888
Cl⁺	-459.18764	0.00	-459.20908	-459.19302
int1_HCIHCI	-920.21931	1.648E-02	-920.24575	-920.21896
ts_HcIHCI	-920.19020	1.420E-02	-920.22256	-920.19593
int2_HclHCl	-920.20842	1.578E-02	-920.23413	-920.20748
int1_DCIHCI				
int1_HCIDCI				
ts_DCIHCI				
ts_HCIDCI				
int2_DCIHCI				
int2 HCIDCI				

S8 Sum of electronic and thermal free energies in eV

	HCI
educts	0
int1	-0.975
ts	-0.343
int2	-0.658
products	-0.441

S9 Sum of electronic and zero-point energies in eV

ł	ICI
educts	0
int1	-1.237
ts	-0.610
int2	-0.925
products	-0.456

CCSD(T)/def2-tzvpp // CCSD/def2-tzvpp

S10 Energies on CCSD(T)/def2-tzvpp // CCSD/def2-tzvpp in a.u.

	energies in a.	u.		
	E	ZPVE	thermal	E + ZPVE
HCI	-460.32335	6.902E-03	-460.34223	-460.32436
HCI⁺	-459.86326	6.202E-03	-459.88162	-459.86304
DCI	-460.32335	4.950E-03	-460.34484	-460.32631
DCI⁺	-459.86326	4.448E-03	-459.88404	-459.86479
H_2CI^+	-460.54691	1.550E-02	-460.55954	-460.53930
HDCI⁺	-460.54691	1.334E-02	-460.56224	-460.54146
CI	-459.65888	0.00	-459.68032	-459.66465
Cl⁺	-459.19302	0.00	-459.21348	-459.19742
int1_HCIHCI	-920.23533	1.624E-02	-920.26321	-920.23623
ts_HcIHCI	-920.22724	1.402E-02	-920.23999	-920.21327
int2_HclHCl	-920.22326	1.569E-02	-920.24966	-920.22300
int1_DCIHCI	-920.23533	1.402E-02	-920.26589	-920.23844
int1_HCIDCI	-920.23533	1.404E-02	-920.26584	-920.23843
ts_DCIHCI	-920.22724	1.186E-02	-920.24260	-920.21542
ts_HCIDCI	-920.22724	1.234E-02	-920.24194	-920.21495
int2_DCIHCI	-920.22326	1.345E-02	-920.25235	-920.22524
int2_HCIDCI	-920.22326	1.364E-02	-920.25187	-920.22505

S11 Sum of electronic and thermal free energies in eV

	HCI	DCI1	DCI2	
educts		0	0	0
int1		-1.071	-1.078	-1.077
ts		-0.439	-0.445	-0.427
int2		-0.702	-0.710	-0.697
products		-0.436	-0.443	-0.443
СТ		-0.005		

S12 Sum of electronic and zero-point energies in eV

	HCI	DCI	1	DCI2	
educts		0	0		0
int1	-	1.329	-1.341	-1.34	¥1
ts	-	0.704	-0.715	-0.70)2
int2	-	0.969	-0.982	-0.97	77
products	-	0.450	-0.461	-0.46	51
СТ	-	0.005			

CCSD(T)/cc-pVTZ // CCSD/def2-tzvpp

S13 Energies on CCSD(T)/cc-pVTZ // CCSD/def2-tzvpp in a.u.

	energies in a.	u.		
	E	ZPVE	thermal	E + ZPVE
HCI	-460.34	6.936E-03	-460.35	-460.33
HCI⁺	-459.88	6.167E-03	-459.89	-459.87
DCI	-460.34	4.925E-03	-460.35	-460.33
DCI⁺	-459.88	4.423E-03	-459.89	-459.87
H_2CI^+	-460.56	1.555E-02	-460.56	-460.54
HDCI⁺	-460.56	1.338E-02	-460.57	-460.55
CI	-459.67	0.000E+00	-459.69	-459.67
Cl ⁺	-459.20	0.000E+00	-459.22	-459.20
int1_HCIHCI	-920.26	1.614E-02	-920.27	-920.25
ts_HcIHCI	-920.24	1.393E-02	-920.25	-920.23
int2_HclHCl	-920.25	1.553E-02	-920.26	-920.24
int1_DCIHCI	-920.26	1.394E-02	-920.28	-920.25
int1_HCIDCI	-920.26	1.395E-02	-920.28	-920.25
ts_DCIHCI	-920.24	1.180E-02	-920.25	-920.23
ts_HCIDCI	-920.24	1.224E-02	-920.25	-920.23
int2_DCIHCI	-920.25	1.330E-02	-920.26	-920.24
int2_HCIDCI	-920.25	1.352E-02	-920.26	-920.24

S14 Sum of electronic and thermal free energies in eV

	HCI	DCI1	DCI2	
educts		0	0	0
int1		-1.061	-1.068	-1.067
ts		-0.446	-0.451	-0.435
int2		-0.712	-0.720	-0.706
products		-0.438	-0.446	-0.446
СТ		-0.008		

S15 Sum of electronic and zero-point energies in eV

	HCI	DCI1	DCI2	2
educts		0	0	0
int1		-1.318	-1.331	-1.330
ts		-0.707	-0.718	-0.706
int2		-0.979	-0.992	-0.986
products		-0.452	-0.464	-0.464
СТ		-0.008		

<u>CCSD(T)/aug-cc-pVTZ // CCSD/def2-tzvpp</u> Energies on CCSD(T)/aug-cc-pVTZ // CCSD/def2-tzvpp in a.u.

S16

	energies in a.	u.		
	E	ZPVE	thermal	E + ZPVE
HCI	-460.34321	6.944E-03	-460.35414	-460.33627
HCI⁺	-459.87842	6.170E-03	-459.89083	-459.87225
DCI	-460.34324	4.931E-03	-460.35684	-460.33830
DCI⁺	-459.87842	4.425E-03	-459.89324	-459.87399
H_2CI^+	-460.56401	1.555E-02	-460.56870	-460.54846
HDCI⁺	-460.56401	1.338E-02	-460.57141	-460.55063
CI	-459.67622	0.00	-459.69189	-459.67622
Cl ⁺	-459.20669	0.00	-459.22275	-459.20669
int1_HCIHCI	-920.27515	1.608E-02	-920.28637	-920.25924
ts_HcIHCI	-920.25007	1.390E-02	-920.26314	-920.23625
int2_HclHCl	-920.26081	1.549E-02	-920.27199	-920.24532
int1_DCIHCI	-920.27515	1.387E-02	-920.28911	-920.26145
int1_HCIDCI	-920.27515	1.389E-02	-920.28902	-920.26143
ts_DCIHCI	-920.25007	1.177E-02	-920.26575	-920.23837
ts_HCIDCI	-920.25007	1.220E-02	-920.26518	-920.23794
int2_DCIHCI	-920.26081	1.326E-02	-920.27468	-920.24755
int2_HCIDCI	-920.26081	1.349E-02	-920.27417	-920.24733

S17 Sum of electronic and thermal free energies in eV

	HCI	DCI1	DCI2	
educts		0	0	0
int1		-1.127	-1.136	-1.133
ts		-0.495	-0.500	-0.484
int2		-0.735	-0.743	-0.729
products		-0.425	-0.433	-0.433
СТ		-0.008		

S18 Sum of electronic and zero-point energies in eV

	HCI	DCI1	l	DCI2	
educts		0	0		0
int1	-1	.380	-1.393	-1.39	92
ts	-0).755	-0.765	-0.75	53
int2	-1	.002	-1.015	-1.00)9
products	-0).440	-0.451	-0.45	51
СТ	-0	0.008			

S19 Harmonic vibrational frequencies in cm⁻¹ for different spezies on UMP2 / def2-tzvpp

$HCI^{+} + HCI --> H_2CI^{+} + CI$

educts HCl⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	product H₂CI ⁺
	2749.6	199.0	-736.2	229.1	1218.5
		288.2	222.9	417.7	2802.4
HCI		493.9	306.7	666.3	2818.3
	3071.6	508.8	520.3	1161.8	
		2892.2	2294.3	1353.5	
		2898.9	2943.7	2881.4	

S20 Rotational constants in GHz for different spezies on UMP2 / def2-tzvpp

HCl⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	H_2CI^+
	301.23	155.54	240.29	313.23	338.08
HCI		4.29	3.26	2.81	276.56
	320.08	4.26	3.24	2.78	152.12

S21 Harmonic vibrational frequencies in cm⁻¹ for different spezies on UMP2 / def2-tzvpp

$DCI^{+} + HCI --> HDCI^{+} + CI$

educts										product	
DCI⁺		DCIHC	I (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-	1) HCID	Cl (ts-2)	DCIHCI (int2-1)	HCIDCI (int2-2) HDCl⁺	
	1972.0		173.1	173.1	-73	5.7	-540.0	227.9	225.3	3 10	60.6
			283.7	283.7	21	3.0	215.8	323.8	363.	5 20	15.9
HCI			365.2	365.2	25	2.9	266.6	666.3	474.	7 28	09.5
	3071.6		501.3	501.3	44	3.1	477.4	1079.6	936.3	3	
			2076.9	2076.9	211	0.7	1644.5	1351.6	996.0	C	
			2895.6	2895.6	229	4.7	2943.6	2067.6	2880.8	8	

S22 Rotational constants in GHz for different spezies on UMP2 / def2-tzvpp

DCI ⁺		DCIHCI (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-1)	HCIDCI (ts-2)	DCIHCI (int2-1)	HCIDCI (int2-2) HDCI ⁺	
	154.95	105.80	105.80	142.27	191.57	161.55	313.23	311.29
HCI		4.22	4.22	3.20	3.24	2.76	2.81	154.39
	320.08	4.15	4.15	3.15	3.23	2.72	2.78	103.20

S23 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD / def2-tzvpp

$HCI^{+} + HCI --> H_2CI^{+} + CI$

educts HCl ⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	product H₂Cl ⁺
	2725.6	197.1	-673.1	192.7	1232.9
		283.7	243.2	388.6	2789.0
HCI		483.2	282.4	620.1	2805.4
	3034.0	513.8	491.2	1203.1	
		2872.0	2287.5	1666.1	
		2884.4	2930.7	2854.5	

S24 Rotational constants in GHz for different spezies on CCSD / def2-tzvpp

HCl⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	H_2CI^+
	300.24	155.45	240.29	312.65	340.32
HCI		4.23	3.26	2.70	274.35
	318.83	4.21	3.24	2.68	151.90

S25 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD(T) /def2-tzvpp // CCSD / def2-tzvpp

 $HCI^{+} + HCI --> H_2CI^{+} + CI$

educts HCl [⁺]		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	product H₂CI ⁺
	2722.3	148.3	-653.7	194.4	1216.4
		282.3	240.0	371.4	2786.7
HCI		459.6	244.0	606.8	2801.5
	3029.7	490.1	461.3	1186.1	
		2867.8	2282.8	1677.8	
		2879.5	2924.3	2850.7	

S26 Rotational constants in GHz for different spezies on CCSD(T) /def2-tzvpp // CCSD / def2-tzvpp

HCI⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	H₂Cl ⁺
	300.24	155.45	240.29	312.65	340.32
HCI		4.23	3.26	2.70	274.35
	318.83	4.21	3.24	2.68	151.90

S27 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD(T) /def2-tzvpp // CCSD / def2-tzvpp

 $DCI^{+} + HCI --> HDCI^{+} + CI$

educts DCI ⁺	6	DCIHCI (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-1)	HCIDCI (ts-2)	DCIHCI (int2-1)	HCIDCI (int2-2)	product HDCl ⁺
	1952.4	120.5	127.4	-652.7	-482.4	193.3	191.8	1057.7
		277.1	277.1	192.8	3 203.0	292.0	319.2	2003.5
HCI		346.0	346.0	241.9	232.9	606.7	432.3	2794.3
	3029.7	475.9	476.0	392.6	6 419.2	1087.8	981.1	
		2060.9	2061.3	2097.0	1636.2	1676.2	1213.5	
		2874.0	2873.4	2283.0) 2924.2	2046.2	2850.0	

S28 Rotational constants in GHz for different spezies on CCSD(T) /def2-tzvpp // CCSD / def2-tzvpp

DCI⁺		DCIHCI (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-1)	HCIDCI (ts-2)	DCIHCI (int2-1)	HCIDCI (int2-2) HI	DCI⁺
	154.44	105.75	105.75	142.27	191.57	161.26	312.65	311.88
HCI		4.16	4.16	3.20	3.24	2.66	2.70	153.88
	318.83	4.10	4.10	3.15	3.23	2.62	2.68	103.04

S29 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD(T) / cc-pVTZ // CCSD / def2-tzvpp

 $HCI^{+} + HCI --> H_2CI^{+} + CI$

educts HCl ⁺	i	HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	product H₂CI ⁺
	2707.1	145.0	-661.2	197.7	1205.8
		281.1	197.1	368.8	2804.7
HCI		455.2	242.7	602.9	2815.2
	3044.7	486.1	434.1	1173.6	
		2852.2	2301.9	1634.1	
		2864.2	2939.5	2839.8	

S30 Rotational constants in GHz for different spezies on CCSD(T) / cc-pVTZ // CCSD / def2-tzvpp

HCl⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	H_2CI^+
	298.29	154.57	240.29	311.20	340.32
HCI		4.21	3.26	2.71	274.35
	318.83	4.19	3.24	2.68	151.90

S31 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD(T) / cc-pVTZ // CCSD / def2-tzvpp

 $DCI^{+} + HCI --> HDCI^{+} + CI$

educts	5										produc	t
DCI ⁺		DCIHCI (int1-	1) HCIDC	l (int1-2)	DCIHCI (ts-	-1)	HCIDCI (ts-2)	DCIHCI (int	2-1) I	HCIDCI (int2-2) HDCl ⁺	
	1941.5	117	.8	124.3	-6	60.2	-487.4	19	96.7	195. ⁻	1	1047.7
		276	.1	276.1	1	59.3	158.3	28	89.7	317.1	1	2014.9
HCI		342	.9	342.9	2	39.8	233.6	6	02.7	429.5	5	2810.2
	3044.7	471	.7	471.8	3	69.8	391.6	10	76.8	969.9	9	
		2049	.9	2050.2	21	07.9	1649.9	16	32.6	1182.7	7	
		2858	.5	2857.9	23	02.1	2939.4	203	38.1	2839.3	3	

S32 Rotational constants in GHz for different spezies on CCSD(T) / cc-pVTZ // CCSD / def2-tzvpp

DCl⁺		DCIHCI (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-1)	HCIDCI (ts-2)	DCIHCI (int2-1)	HCIDCI (int2-2) HDCI	F
	153.43	105.16	105.16	142.27	191.57	160.52	311.20	311.88
HCI		4.14	4.14	3.20	3.24	2.66	2.71	153.88
	318.83	4.08	4.08	3.15	3.23	2.62	2.68	103.04

S33 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD(T) / aug-cc-pVTZ // CCSD / def2-tzvpp

 $HCI^{+} + HCI --> H_2CI^{+} + CI$

educts HCl ⁺	i	HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	product H₂CI ⁺
	2708.4	121.6	-647.5	196.3	1205.1
		282.5	180.0	358.9	2806.0
HCI		451.6	245.7	591.8	2815.4
	3048.3	480.2	425.5	1175.0	
		2854.9	2306.7	1636.0	
		2866.4	2942.7	2841.5	

S34 Rotational constants in GHz for different spezies on CCSD(T) / aug-cc-pVTZ // CCSD / def2-tzvpp

HCl⁺		HCIHCI (int1)	HCIHCI (ts)	HCIHCI (int2)	H₂Cl ⁺
	298.29	154.57	240.29	311.20	340.32
HCI		4.21	3.26	2.71	274.35
	318.83	4.19	3.24	2.68	151.90

S35 Harmonic vibrational frequencies in cm⁻¹ for different spezies on CCSD(T) / aug-cc-pVTZ // CCSD / def2-tzvpp

 $DCI^{+} + HCI --> HDCI^{+} + CI$

educts	6						ł	product
DCI ⁺		DCIHCI (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-1)	HCIDCI (ts-2)	DCIHCI (int2-1) H	ICIDCI (int2-2)	HDCI⁺
	1942.5	92.1	100.6	-646.4	478.1	195.3	193.7	1046.7
		277.7	277.7	146.2	2 140.1	282.2	308.6	2015.4
HCI		339.5	339.5	241.9	9 236.2	591.7	421.6	2811.0
	3048.3	466.8	466.9	361.6	383.5	1077.5	971.2	
		2051.6	2052.0	2110.2	2 1653.3	1634.7	1184.0	
		2861.0	2860.4	2306.9	9 2942.7	2039.2	2840.9	

S36 Rotational constants in GHz for different spezies on CCSD(T) / aug-cc-pVTZ // CCSD / def2-tzvpp

DCl⁺		DCIHCI (int1-1)	HCIDCI (int1-2)	DCIHCI (ts-1)	HCIDCI (ts-2)	DCIHCI (int2-1)	HCIDCI (int2-2) HDCI	F
	153.43	105.16	105.16	142.27	191.57	160.52	311.20	311.88
HCI		4.14	4.14	3.20	3.24	2.66	2.71	153.88
	318.83	4.08	4.08	3.15	3.23	2.62	2.68	103.04

IV. Comparison of relevant orbiting and rotational angular momenta

Pump line	N /(kg*m ² *s ⁻¹)	N / ħ
R(1)	4.463E-35	0.4232
R(2)	1.529E-34	1.4503
R(3)	3.060E-34	2.9019
R(4)	4.225E-34	4.0063
R(5)	5.340E-34	5.0639
R(6)*	6.665E-34	6.3203

 Tables S37
 Rotational angular momenta of the HCI⁺

* extrapolated

Table S38	Orbiting angular momenta of the HCI ⁺ + HCI system		
E _{c.m.} / eV	L /(kg*m ² *s ⁻¹)	L / ħ	
0.2	1.957E-32	185.561	
0.5	2.461E-32	233.331	
0.75	2.723E-32	258.223	
1.0	2.926E-32	277.479	
1.5	3.238E-32	307.081	
2.0	3.480E-32	329.980	

Table S39 Rotational angular momenta of the DCI⁺

Pump line	N /(kg*m ² *s ⁻¹)	N / ħ
R(1)	5.020E-35	0.4760
R(2)	1.351E-34	1.2814
R(3)	3.034E-34	2.8773
R(4)	3.875E-34	3.6746
R(5)	5.245E-34	4.9738
R(6)*	6.405E-34	6.0733
R(7)*	7.606E-34	7.2122
R(8)*	8.807E-34	8.3511

* extrapolated

Table S40	Orbiting angular momenta of the DCI ⁺ + H	biting angular momenta of the DCI ⁺ + HCI system		
$E_{c.m.}$ / eV	L /(kg*m ² *s ⁻¹)	L/ħ		
0.2	1.970E-32	186.811		
0.5	2.477E-32	234.902		
0.75	2.741E-32	259.962		
1.0	2.946E-32	279.348		
1.5	3.260E-32	309.149		
2.0	3.503E-32	332.202		

Literature

 K. L. Saenger, R. N. Zare and C. Mathews, *Journal of Molecular Spectroscopy*, 1976, 61, 216–230.